
1

MPI PERUSE
 An MPI Extension for Revealing

Unexposed Implementation Information

Version 2.0

Abstract
This document describes an interface extension to the MPI-2 standard.
The interface exposes useful information about an MPI implementation’s
internal state. The interface is appropriate for those who require an
increased understanding of MPI internals such as those developing
parallel development application tools.

2

Point of Contact
Terry Jones trj@llnl.gov 925.423.9834

Major Contributors
The following contributors have/are participating in telecons, meetings (e.g. SC BOFs), etc.

Brian Barrett, Indiana University
Dan Bennett, University of Edinboro

David Bernholdt, Oak Ridge National Laboratory
Ron Brightwell, Sandia National Laboratory

Lars Ailo Bongo, University of Tromso, Norway
George Bosilca, University of Tennessee, Knoxville

Ana Cortes, Universitat Autonoma de Barcelona
Toni Cortes, CEPBA

Jim Coyle, Iowa State University
Bronis R. de Supinski, Lawrence Livermore National Laboratory

Rossen Dimitrov, MPI Software Technology Inc.
Sevki Erdogon, University of Hawaii
Hans-Christian Hoppe, Pallas/Intel

Graham Fagg, University of Tennessee, Knoxville
Ferdinand Geier, Cluster Competence Center

Judit Gimenez, CEPBA
Rich Graham, Los Alamos National LaboratoryWilliam Gropp, Argonne National Laboratory

David Gunter, Los Alamos National Laboratory
Steve Healey, Intel

Curtis Janssen, Sandia National Laboratory
Karen Karavanic, Portland State University

Rainer Keller, HPC Center, Stuttgart
Bernie King-Smith, IBM

Terry Jones, Lawrence Livermore National Laboratory
Darren Kerbyson, Los Alamos National Laboratory

Jesus Labarta, CEPBA
Brian LePore, Powrsurg.com

Andrew Lumsdaine, University of Indiana
Chee Wai Lee, University of Illinois, Urbana Champaign

Rusty Lusk, Argonne National Laboratory
Dave Merril, Unisys

Bernd Mohr, FZJ
Kathryn Mohror, Portland State University

Matthis Mueller, HPC Center, Stuttgart
Beth Noble, IBM

Bob Numrich, University of Minnesota
Patrick Ohly, Pallas/Intel

Dhabaleswar Panda, Ohio State University
Kurt Pinnow, IBM

Kumaran Rajaram, MPI Software Technology Inc.
Hubert Ritzdorf, NEC Research Labs, Europe

Phillip Roth, University of Wisconsin
Martin Schulz, Lawrence Livermore National Laboratory

Miquel Senar, Universitat Autonoma de Barcelona
Tony Skjellum, MPI Software Technology Inc.

Jeff Squyres, Indiana University
Richard Treumann, IBM

Tim Woodall, Los Alamos National Laboratory

Acknowledgements
We appreciate support shown by the following:

Karl Feind, SGI
MaryDell Nochumson, Los Alamos National Laboratory

Susan Post, Los Alamos National Laboratory
Jeffrey Vetter, Oak Ridge National Laboratory

3

Revision Control
Revision Date Changes Changed

By
Affected
Sections

1.0 4/22/2002 Initial version R. Dimitrov
1.1 5/7/2002 Added comments from

R. Brightwell, B. de Supinski, C. Janssen, T. Jones, S. Post
T. Jones

1.2 5/20/2002 Reflects comments provided in 1.1 and discussion at LLNL on
May 13, 2002.
Clarification about scope of document
Clarification about sample profiler
Clarification about levels of support and scope
Clarification on portability
Adding an example for callbacks
Changes in PERUSE API
Added discussion on thread safety
Added discussion on layered libraries
Added discussion on conditional callbacks
Adding querying PERUSE functions
Changed Peruse_types.h
Changed Peruse.h
Changed examples (added one more)

R. Dimitrov

1.2
1.2
2.2
2.4
2.5
3.2
3.3
3.4
3.5
2.6
Appendix A
Appendix B
Appendix C

1.3 6/4/2002 First version of document intended to be a standalone, open
specification to the High Performance Computing community
at large. (Earlier versions were specifically targeted at a
deliverable in MSTI’s ASCI contract with LANL, LLNL, and
Sandia.)

T. Jones Title page
1.1
Inserted new
1.2,1.3,4.2,4.3,4.
4

1.4 7/20/2002 Adopted name MPI_Peruse T. Jones
1.5 8/22/2002 Made clarifications in the Background and Scope sections;

Clarifications of objective;
New section on design concepts;
Added a new section (chapter) for clarification on the
concepts and terms used in this document;
Changed a function prototype
Joined Appendix A and B
Appendix C became Appendix B
Added a new example to Appendix B

R. Dimitrov 1.2, 1.3

2.1
2.2
3

4.2.3
Appendix A
Appendix C
Appendix B

1.6 8/27/2002 Minor edits, clarifications to 1.3, 2.1, 2.2, 3.1, 3.2, 3.3, 3.4,
3.6, 3.7, 3.8

T. Jones 1.3, 2.x, 3.x

1.7 9/25/2002 Discussion on debug and production libraries;
More detail on the callback design approach, which is now
equivalent to the query approach;
Clarification on levels of support and compliance;
Clarification on user program portability;
Adding sender based matching for message queues;
Clarification on collective metrics;
Explain how PERUSE can be used to provide global scope
Additional clarification on the meaning of metrics and when
measurements are taken;
Fixes in the API, definitions, and types;
Clarification on callbacks and the event based model;
Editing and adding new examples

R. Dimitrov
K. Rajaram

2.1
2.2

2.3
2.5
3.4, 3.5
3.6
3.8
4.1.1

4.2
4.5
Appendix B

1.8 3/14/2003 Removed the requirement for using the same constant values
in all implementations
Removed MPI_Datatype metrics;
Removed API calls that work with MPI_Datatype;
Removed metric groups and corresponding types
Removed API calls for metric groups
Eliminating the query mechanism;
Emphasizing only user callbacks as the only mechanism for
collection of metrics data;
Removed the statistics types and API calls
Renamed Peruse.h to peruse.h and all Peruse_xxx_t types to
peruse_xxx_t
Modified peruse.h;

R. Dimitrov 2.1
2.2
2.4
4.1
4.2
4.4
Appendix A
Appendix B

4

Modified examples;
1.9 Update contributors and add acknowledgements

Adding new definitions
Clarifying portability issues
Clarifying the distinction between message matching and

completion of requests
Added “shipped bytes” for MPI I/O to account for non-local

I/O operations
Adding a new error code PERUSE_ERR_MPI_OBJECT
Adding message envelope information to the callback

parameters
Added requirements for user callbacks
Changed the meaning of the user callback return codes
Clarification on return codes and MPI error classes
Changed the thread-safety semantics
Modified Appendix A and B
Adding Appendix C and D for listing the PERUSE API

functions and constants

R. Dimitrov
T. Jones

1.4
2.4
3.4

3.7

4.2
4.1.2

4.1.2
4.1.2
4.2
4.3
Appendix A, B
Appendix C, D

1.10 Reflected the event model
Added clarification for unexpected/early arrival messages
Added a new section that focuses on PERUSE events
Moved sections to Appendix E

Adding Appendix E with collective, one-sided, and file I/O
events not defined in this version for future consideration
Updated peruse.h and al examples
Updated function and constant lists

R. Dimitrov
T. Jones

1.3, 2.1
3.5
4
3.6, 3.7, and
parts of 4.1.1
Appendix E

Appendix A, B
Appendix C, D

1.11 10/1/2004 Clarification on the message matching and completion
Listing constraints on callback’s code more directly and

adding clarification on callback return codes
Clarification on when PERUSE_Init can be called
Clarification on error condition when MPI object is freed
Removed old text left from the statistics model
Added section to treat relationships between MPI and

PERUSE handles

R. Dimitrov
T. Jones

3.4
5.1.2

5.2.1
5.2.14
5.4
5.6

1.12 2/6/2006 Clarified subset of MPI covered by PERUSE.
Additions and corrections to Definitions, Abbreviations and

Acronyms
Clarified scope limited to point2point messaging

Added pseudo-code example
Clarifications about events, added simple event diagram
Clarified detailed message event diagram
Added clarification for intended users
Added clarification on activation windows
Added clarification on events from collective calls
Added clarification about PERUSE use with multiple tools
Added PERUSE_Lock and PERUSE_Unlock

Added PERUSE_PER_TAG, PERUSE_PER_SOURCE
Added K. Mohror proposal to track MPI objects
Added K. Mohror proposal on dynamic process creation
Added K. Mohror proposal on remote memory access
Added K. Mohror request for more info on MPI-IO
Added request for more info on Control packets

T. Jones
K. Mohror.

1.1, 1.3
1.4

2.1, 5.2.x, 8., 9.,
10., 12.x.x
2.1
4.
4.3.2
5.
5.1.1
5.1.2
5.2.1
5.2.16, 5.2.17,
5.3
11.
12.412.5
12.6
12.7
12.8

1.13 2/25/2006 Corrected detailed message event diagram
Removed spurious references to win and file
Corrected return codes for PERUSE user callbacks
Added PERUSE_PER_PEER
Clarifications on PERUSE_Lock()
Clarifications of semantics in multi-threaded mode
Removed references to other language bindings
Add new PERUSE lock error codes

T. Jones 4.3.2
5.1, 5.1.1, 5.1.2
5.1.2
5.2.6
5.2.16
5.3
6.2
8.0, 11.0

2.0 3/17/2006 Minor grammatical corrections
Removed spurious references to win and file

T. Jones 1.3,2.2,5,5.1.2,5.6
5.1, Appendix A

5

Table of Contents

1. MAIN CONCEPTS AND TERMS ...7

1.1 PURPOSE ..7
1.2 BACKGROUND ..7
1.3 SCOPE ..7
1.4 DEFINITIONS, ABBREVIATIONS, AND ACRONYMS...7

2. GENERAL DESIGN CONSIDERATIONS...8

2.1 DESIGN OBJECTIVES OF PERUSE..8
2.2 DESIGN CONCEPT..9
2.3 LEVELS OF SUPPORT AND COMPLIANCE..10
2.4 PORTABILITY..10
2.5 INTENDED AUDIENCE ..10
2.6 EXAMPLE USES OF PERUSE ...10

3. MAIN CONCEPTS AND TERMS ...11

3.1 MESSAGE REQUESTS AND MESSAGE TRANSFERS...11
3.2 REQUEST ACTIVATION AND MESSAGE TRANSFER INITIATION...................................11
3.3 REQUEST COMPLETION, REQUEST COMPLETION NOTIFICATION, AND TRANSFER

COMPLETION ..12
3.4 MESSAGE/REQUEST QUEUES ...13
3.5 EXPECTED (POSTED) AND UNEXPECTED (EARLY ARRIVAL) QUEUES.........................13

4. EVENTS ..15

4.1 ASSOCIATION OF EVENTS WITH REQUESTS ...15
4.2 SCOPE OF PERUSE EVENTS..16
4.3 POINT-TO-POINT COMMUNICATION EVENTS..16

4.3.1 Request and message event definition and description.............................. 16
4.3.2 Request and message event diagram... 18

4.4 QUEUE SEARCH EVENTS ..18

5. PERUSE API...19

5.1 PERUSE TYPES AND CONSTANTS..19
5.1.1 Event handles (peruse_event_h) ... 20
5.1.2 User callbacks.. 21

5.2 PERUSE FUNCTION CALLS ..23
5.2.1 PERUSE_Init... 23
5.2.2 PERUSE_Query_supported_events.. 23
5.2.3 PERUSE_Query_event .. 24
5.2.4 PERUSE_Query_event_name .. 24
5.2.5 PERUSE_Query_environment ... 25
5.2.6 PERUSE_Query_queue_event_scope .. 25
5.2.7 PERUSE_Event_comm_register .. 25
5.2.8 PERUSE_Event_activate ... 26
5.2.9 PERUSE_Event_deactivate.. 26
5.2.10 PERUSE_Event_release... 26
5.2.11 PERUSE_Event_get... 27
5.2.12 PERUSE_Event_object_get ... 27
5.2.13 PERUSE_Event_comm_callback_set... 27

6

5.2.14 PERUSE_Event_comm_callback_get .. 28
5.2.15 PERUSE_Event_propagate .. 28
5.2.16 PERUSE_Lock .. 29
5.2.17 PERUSE_Unlock... 29

5.3 SEMANTICS IN MULTITHREADED MODE ..29
5.4 PERUSE AND LAYERED LIBRARIES...30
5.5 QUERYING PERUSE SUPPORT OPTIONS AND MPI’S RUN-TIME ENVIRONMENT........31
5.6 RELATIONSHIP BETWEEN MPI HANDLES AND PERUSE EVENT HANDLES31

6. EXTERNAL INTERFACES ..31

6.1 TARGET OPERATING SYSTEMS AND PLATFORMS ...31
6.2 LANGUAGE BINDINGS..31
6.3 LIBRARY VERSIONS...31

7. REFERENCES..3132

8. APPENDIX A: EXAMPLE PERUSE HEADER FILE (PERUSE.H)33

9. APPENDIX B: PERUSE EXAMPLES ..37

9.1 EXAMPLES OF INSTRUMENTED USER MPI PROGRAMS...37
9.1.1 Using environment, event, and queue event scope queries........................ 37
9.1.2 Using callbacks.. 38
9.1.3 Using queue events .. 40
9.1.4 Counting posted and unexpected receives .. 42

9.2 EXAMPLE PERFORMANCE PROFILER CODE..44

10. APPENDIX C: PERUSE API FUNCTIONS ...52

11. APPENDIX D: PERUSE CONSTANTS ..53

12. APPENDIX E: PROPOSED ADDITIONS TO PERUSE RETAINED FOR
FUTURE VERSIONS 54

12.1 COLLECTIVE COMMUNICATION METRICS (MPI_COMM)54
12.2 PARALLEL IO METRICS (MPI_FILE) ..55

12.2.1 PERUSE_Event_file_register... 57
12.2.2 PERUSE_Event_file_callback_set ... 57
12.2.3 PERUSE_Event_file_callback_get... 58
12.2.4 File Related Items to be incorporated in peruse.h 58
12.2.5 MPI File code example .. 59

12.3 ONE SIDED COMMUNICATION (MPI_WIN) ...61
12.3.1 PERUSE_Event_win_register .. 61
12.3.2 PERUSE_Eevent_win_callback_set ... 62
12.3.3 PERUSE_Event_win_callback_get .. 62
12.3.4 Win related info to be included in peruse.h... 62

12.4 IMPROVED TRACKING OF MPI OBJECTS ..63
12.5 INFORMATION WANTED FOR SUPPORT OF DYNAMIC PROCESS CREATION................64
12.6 INFORMATION WANTED FOR REMOTE MEMORY ACCESS ..65
12.7 INFORMATION WANTED FOR MPI-I/O..66
12.8 INFORMATION WANTED FOR CONTROL PACKETS..66

7

1. Main Concepts and Terms

1.1 Purpose
This document presents the design for an MPI performance revealing extensions interface

(PERUSE). The extensions are intended to provide greater insight into the interactions between
application software, system software, and message-passing middleware that take place in a
parallel environment typical for supercomputer applications. In particular, the interface is
designed to operate with a subset of version 2 of the Message Passing Interface (MPI-2) [1, 2].
1.2 Background

This specification is an outgrowth from a proposed interface designed by MPI Software
Technology Incorporated (http://www.mpi-softtech.com) [3].

In addition, the current specification reflects the thinking and direction of multiple
institutions with a long history of commitment and use of MPI including Lawrence Livermore
National Laboratory, Los Alamos National Laboratory, Sandia National Laboratory, Pallas, and
MPI Software Technology Incorporated. A large number of PERUSE features presented in this
document are based on a requirements gathering phase carried out among MPI users in the three
ASC labs.
1.3 Scope

This document presents the specification of PERUSE, a conceptual design, definition of
PERUSE API with C bindings, an example PERUSE C include header file, and a set of examples
for demonstrating the used of PERUSE.

After consideration, we have decided to release the first specification with a focus on
MPI’s point-to-point message passing. The hope is that we will learn from both MPI
implementations and parallel tools, and that the more complicated aspects of MPI (including
MPI-IO, collectives, MPI one sided, dynamic MPI, and so on) will profit from these experiences.
We do anticipate that PERUSE will be valuable for the study of MPI-IO, Collectives, and MPI-
1Sided usage and have included an initial strawman for how PERUSE might be extended in
Appendix E (see section 12).

PERUSE is intended to facilitate the development of parallel program development tools
such as profiler tools and debugger tools; it is not intended to provide asynchronous extensions
to MPI for user level applications.
1.4 Definitions, Abbreviations, and Acronyms
API: Application programmer’s interface.
ASC: Advanced Simulation and Computing Program. A United States Department of Energy
program created for science-based Stockpile Stewardship.
Event callback: user-defined callback function registered with the MPI library
Event callback activation window: Period during which event callbacks will be called when the

MPI event of interest occurs. Note that PERUSE activation windows can be overlapping;
more than one PERUSE window may be active at any given time.

LANL: Los Alamos National Laboratory
LAPI: Low-level Application Programming Interface: an active-message-type API for optimal

communication through the IBM SP switch. Provides reliable, unordered communication
between all processes in the MPI world.

LLNL: Lawrence Livermore National Laboratory
MPI: Message Passing Interface.
MPI-2: Extensions to the MPI standard.
MPI I/O: An MPI extension allowing for the manipulation of files on different file systems.
MSTI: MPI Software Technology Incorporated

8

PERUSE: MPI Performance examination and revealing unexposed state extension specification –
the specified API.

PERUSE Event: Internal MPI processing events of interest to PERUSE.
PERUSE Implementation: interfaces, utilities, and mechanisms provided by an MPI

implementation in order to support PERUSE.
PERUSE User: software that uses the PERUSE interface.
PERUSE Specification: the draft document that defines PERUSE (this document).
PMPI: Profiling interface for MPI specified by the MPI standard.
Portals: Low-level API providing reliable and ordered communication for various interconnects

and machines including Myrinet/Cplant and Red Storm.
Sandia: Sandia National Laboratories
SMP: Symmetric multiprocessor.

2. General Design Considerations

2.1 Design objectives of PERUSE
The main objective of PERUSE is to provide MPI application and performance tool

developers with the capability to obtain low-level performance data unavailable through the
standard MPI profiling interface in a non-intrusive manner. The PERUSE design provides an
interface that suggests low processing overhead by allowing the user to collect data only for the
MPI events that are of interest during the periods of program’s execution of user’s choice. This
fine grain level of control minimizes unnecessary processing not relevant to the profiler’s goals.
The fundamental design concept of PERUSE is the use of user callbacks for registering MPI
processing events of interest. These events are related to the MPI internal processing of user
requests for point-to-point message passing. (As explained earlier in section 1.3, although this
original version of PERUSE focuses on message-passing it is anticipated that future versions of
PERUSE will likely include events specific to file I/O, one sided communication, collectives,
and so on.) The event callback design leaves data collection, metrics definition, and statistics
processing to users, thus further reducing the processing overhead in the MPI library and the
same time simplifying the implementation of PERUSE.

It is not an objective of PERUSE to create an abstract model of MPI implementations or
to force MPI libraries to comply with such a model and subsequently implement PERUSE
against this model. Such an abstract model will not be useful in meeting the main objectives of
PERUSE and may actually be counter-productive in terms of achieving these objectives. It is
expected that certain MPI events defined in this specification (also referred to as PERUSE events
hereinafter) will not be applicable to some MPI implementations either because the
implementation mechanisms chosen by the specific libraries do not match the definition of the
events or because implementing the callback mechanism for these events might be too intrusive.

It is recognized that attempts to measure a given attribute of a program may perturb the
program. As measurements become more intrusive, they may actually become less valuable.
PERUSE expects that MPI libraries will provide only information which is both accurate and
relevant to their architecture’s performance. The definition of PERUSE events is based on
common MPI concepts; however, it is not expected that all MPI implementations will be able to
supply relevant performance information for all concepts included in PERUSE. If an event
suggests that the MPI library needs to create artificial constructs in order to present relevant
performance data, it is best to not provide the particular event. PERUSE provides a portable
ASCII string based query mechanism to allow users to query the MPI library implementations
about which PERUSE events are supported. This mechanism will not cause compiler/link
problems for applications that are written to utilize this mechanism. Also, it is suggested that the
MPI libraries provide efficient mechanisms for running with and without PERUSE. This may be
accomplished by different builds with and without PERUSE (e.g. debug and production

9

libraries), or by a dynamic implementation which is able to switch code paths. Quality MPI
implementations will expose many PERUSE events, even such that are intrusive, but possibly
still providing useful performance information without affecting the peak performance of the
production library.

The main objective of PERUSE can be summarized in the following statement: PERUSE
presents non-portable MPI performance related information in a portable manner.

2.2 Design concept
The PERUSE design presented in this document is based on the use of user defined

callback functions that are invoked by the MPI library when an event of interest to the PERUSE
user occurs. A special callback registration facility is provided. Using this model, the application
or the performance-monitoring tool, requests that the MPI library invoke a user registered
callback at the places where the library performs operations related to the specific events. The
section of this document that describes events definition provides more details on when the

callbacks will be invoked.

Main()
{
 initialize MPI;
 initialize PERUSE;
 initialize PERUSE event handles;
 register PERUSE events with My_callback_routine();
 activatePERUSE event handles;

 while (parallel tool is active) {
 do normal parallel tool stuff;
 }

 report statistics gathered by My_callback_routine();
}

My_callback_routine()
{
 get PERUSE event;
 switch (event)
 {
 update statistics based on event information
 }
}

PERUSE Pseudo code
(see Section 9.1.4 for corresponding example in C)

10

2.3 Levels of support and compliance
PERUSE support can be provided at different levels by its implementations. A portable

mechanism for querying PERUSE about its level of support is provided. This mechanism is
based on ASCII string queries. All PERUSE implementations must provide the full set of API
functions, data types, and constants. The optional support refers only to the set of events that are
supported by the implementation. Since the goal of PERUSE is to provide accurate and detailed
performance information in a non-intrusive manner, MPI libraries that are unable to provide an
event without significant performance or design impact are encouraged not to implement this
event.

PERUSE encourages MPI implementations to provide implementation specific events
that are not included in the specification but can offer beneficial information to users. PERUSE
provides a special discovery mechanism for querying all supported events in a portable manner,
including the implementation-specific ones. If the MPI implementation provides
implementation-specific events, it is the responsibility of this implementation to describe their
meaning and intended way of use.
2.4 Portability

PERUSE facilitates both implementation and user-level portability. PERUSE allows
implementations to chose the specific mechanisms for declarations of data types and constants so
that providing PERUSE extensions by MPI vendors requires minimum structural changes and
processing in the existing MPI libraries. User-level portability is similar to the user-level
portability of the MPI standard – it is guaranteed by a standardized set of API function calls, data
types, and constants. Also, in the same vein as mpi.h, PERUSE suggests that a header file named
peruse.h is used by all implementers.

This specification does not aim to provide binary interoperability, as this has not been
among the goals of the MPI standard. The string names of PERUSE events can be represented
with any NULL terminated string and are implementation dependent. One possible scheme that
will improve the user level portability is if the strings correspond to the definitions of the event
identifier constants, e.g., the string for PERUSE_COMM_POSTED_QUEUE_INSERT is
“PERUSE_COMM_POSTED_QUEUE_INSERT”.

PERUSE implementations are required to support all functions and data types of the API.
The optional support is only related to the supported events. For increased portability, it is
suggested that the user programs be written so that they use only the string based query
mechanism for discovering what events are supported and obtaining the numerical event
descriptor identifiers. This will also enable a portable use of non-standard, vendor-specific
events.
2.5 Intended audience

The audience of this specification are providers of PERUSE implementations and
developers of codes that utilize the PERUSE extensions. Such developers can be either MPI
application designers or providers of MPI performance monitoring tools.
2.6 Example uses of PERUSE

Appendix B presents example MPI programs that utilize the PERUSE interface. These
examples demonstrate the use of PERUSE and assist the reader in understanding the semantics
and intended use of PERUSE and its concepts.

11

3. Main Concepts and Terms

This section presents definitions and assumptions of the main concepts used in the design
of PERUSE. These definitions and assumptions are based on the semantics of MPI as specified
in the MPI standard. Of special interest to PERUSE are the issues related to message requests,
message transfers, activation/initiation and completion of requests and transfers, message
ordering and matching, and the two-sided model of the send/receive message-passing mode of
communication defined by MPI.
3.1 Message requests and message transfers

For the purposes of PERUSE, a message request represents the specification of the work
that the MPI library is requested to perform by the user process, specifically, the message
(defined by its buffer address, size, and datatype), the communication operation (send or
receive), the peer process (source or target), and the MPI communication space (defined by user
tag and communicator). Message requests can be created by using non-blocking MPI calls
(MPI_Isend, MPI_Irecv, MPI_Send_init, MPI_Recv_init) or blocking calls (MPI_Send,
MPI_Recv). In the context of MPI-2, the definition of message request is extended to include file
I/O operations and one-sided communication. The message request is also used for notification
when the requested work is completed. The MPI library may use various internal mechanisms
and protocols to perform the requested work, which eventually include an invocation of one or
more data transfer operations that move the bytes of the requested message and possibly control
packets associated with the MPI message protocols. These data transfer operations are provided
by the underlying communication system software, such as TCP socket send() and recv()
operations or memory copy operations in SMP configurations. PERUSE defines a message
transfer as the collection of data transfers (one or more) that actually perform the physical
transfer of the entire user message, not including control packets that might be used by the MPI
library for implementing internal protocols and flow control schemes. For example, the control
packets associated with rendezvous protocols are not considered part of the message transfer.
Consequently, it is expected that for the PERUSE events that indicate request activation and
message transfer initiation, the MPI library will make two distinct calls to the user-registered
callbacks. The period of time between these calls will be equal to the period between the moment
when the user activates the request and when the first data transfer that actually moves the first
byte of the user message (not necessarily the byte with lowest memory address) is scheduled. If
the MPI library needs to exchange control packets, which are likely performed by the same data
transfer (byte movement) operations, these packets should not cause invocation of the PERUSE
event that corresponds to message transfer initiation.

The message request is an MPI concept whereas the data transfer (used for message
transfers) is a generic concept that represents mechanisms provided by the underlying
communication system software to move bytes of data from one location to another, regardless
of the actual means of this movement. Completing a message request involves a message
transfer (composed of one or more data transfers), ordering, matching, completion notification,
other library processing, and possibly special protocols that may include additional data transfers
(not counted as part of the message transfer).
3.2 Request activation and message transfer initiation

Activation of a message request is the moment when the user process executes an MPI
call that suggests a communication operation, or according to the MPI terminology, the request
becomes “active.” Examples of MPI calls, which activate messages include MPI_Recv,
MPI_Irecv, MPI_Send, MPI_Isend, and MPI_Start. A number of PERUSE events refer to

12

initiation (start, beginning) and completion of message transfers. The meaning of these
operations is limited only to what the MPI library can guarantee or “see.” For example, the
beginning of a send message transfer for a TCP socket is the moment when the library calls the
send() system call over the socket file descriptor. Clearly, the MPI library has no knowledge if
the operating system will actually initiate the physical transfer over the network interface at the
time the send() call is made or if the data will be buffered and the physical transfer will begin
later. As the low-level communication information is generally unavailable to user level
processes (the most common mode of MPI library use), PERUSE does not require that the MPI
libraries provide hardware-specific information and all references to certain events and timings
are only from standpoint of the MPI library. However, an MPI library with access to low-level
hardware or firmware-related information is not restricted from providing such information.

In line with the definition of message request and message transfer, message request
activation and message transfer initiation are two distinct operations, possibly executed with a
long period of time in between. Users expect that when they activate a message request, the
message transfer associated with this request will be initiated as soon as possible. Thus,
providing a mechanism for measurement of the length of the interval between message request
activation and message transfer initiation can significantly benefit MPI user program
performance analysis.

For protocols that use “get” based data transfer primitives, the initiation of the send
message transfer may be transparent to the sender process, so the MPI library may be unable to
detect when the “get” operation is initiated by the receiver. In these cases, it is recommended that
the library does not implement special mechanisms for providing the expected sender
functionality at the receiver, which may involve additional processing and communication
overhead. Therefore, it is recommended that the MPI library that uses “get” based
communication primitives for message transfers do not implement the PERUSE events that
indicate transfer initiation at the sender. The PERUSE callback mechanism offers an opportunity
to performance mentoring tools to make inference about remote events and thus correlate
activities on different MPI processes. These tools may be able to provide valuable performance
data with global semantics, which is not available directly through the PERUSE API.
3.3 Request completion, request completion notification, and transfer completion

For the purposes of PERUSE, a distinction is made between request completion from
standpoint of the MPI library and from standpoint of the user process (user process notification).
Since MPI does not provide any asynchronous means of notification, all request completion
notifications are done only when the user process specifically requests such notifications
thorough the MPI_Wait and MPI_Test family of calls (or within blocking MPI calls). However,
the library can effectively complete the message transfer associated with a given request before
the user asks for notification. If the period between internal request completion and notification
is long, the parallel algorithm designer may decide to check the status of the request of interest
earlier or more frequently. PERUSE is designed to provide such detailed information.

Message request completion and message transfer completion are distinct operations,
similar to request activation and transfer initiation as described above. Request completion refers
to the moment when the library internally marks a message request completed. Message transfer
completion is the moment when the library has scheduled for sending the last byte of an outgoing
message or has received the last byte of an incoming message. The MPI library can indicate
request completion immediately after a message transfer has completed and often the two
completions are equivalent with respect to time. However, in other designs, the MPI library may

13

not indicate completion of the request immediately after the completion of the message transfer,
thus there may be a delay between transfer completion and request completion.

For MPI libraries that use remote memory operations for indicating completion of
message transfers (such as in the case when a memory flag is updated through a remote DMA
operation), providing an accurate timing about transfer completion may require substantial
processing overhead, similar to the one described above for the case of “get”-based protocols. In
such cases, it is recommended that the MPI library forego implementing PERUSE events that
facilitate measurements related to the message transfer completion timing.
3.4 Message/Request queues

The MPI standard defines the semantics of message ordering and of the matching of
receive requests to sent messages (Section 3.5 of the MPI 1.1 standard). Messages are non-
overtaking. Thus, if a process sends two messages in the same communication domain to the
same receiver, using the same message tag, the receiver must match them in the order that they
were sent. The MPI standard does not mandate any particular order in which the message
transfers will be actually completed after they are matched. If the receiver posts two receive
requests with the same envelope, not using wild cards, the second request cannot be matched
before the first one. These ordering and matching rules for sends and receives imply that the MPI
library needs to maintain an internal order of the message requests. For the purposes of
PERUSE, the mechanism that is generically used to represent this order is called a “message
queue” or alternatively a “request queue”. PERUSE does not attempt to present an abstract
model for implementing the message queues and the protocols for message transmission, and
does not favor receiver based matching versus sender based matching. PERUSE provides the
same queue concepts for both sender and receiver-based matching.

Note that the “message queue” and “request queue” need not be implemented via any
specific programmatic mechanism or data structure; it is only necessary that they preserve the
ability to provide MPI ordering and matching semantics. Thus, PERUSE does not impose any
specific architecture or programmatic approaches to the MPI implementations. Furthermore,
PERUSE does not mandate whether the specific mechanisms that implement the
message/request queues are global for the entire library, or on a per-communicator basis. Other
implementations are also possible. (PERUSE provides a query mechanism to inform the user
about the scope of the message queues.) Consequently, message and request queues used in
PERUSE to represent the MPI ordering and matching semantics should not be confused with the
actual implementation of these concepts.
3.5 Expected (posted) and unexpected (early arrival) queues

The MPI send/receive mode of communication (as opposed to the one-sided mode of
communication defined in MPI-2) is a two-sided model. According to this model, the necessary
(but not sufficient) condition for a message to be transferred from the sender to the receiver is
that the sender activates a send request and the receiver activates a matching receive request.
Since the sender provides the entire information about the message (including the content of the
message) at the moment when the send request is activated, no message transfer can be initiated
before the sender actually activates the send request. The MPI standard refers to this model as
“push” two-sided communication. Both the send and receive requests have local semantics and
the MPI standard does not impose any requirements in terms of temporal ordering of matching
send and receive requests, thus allowing a send request to be activated at the sender before or

14

after a matching receive request is activated (posted) at the receiver12. According to the relative
time at which the receiver posts a receive request and the time at which the sender posts the send
request PERUSE defines two types of message/request queues related to the receiver process –
expected (posted) and unexpected. Unexpected messages are sometimes called “early arrival”
messages and are unexpected from standpoint of the MPI library – a message envelope sent by
the sender process arrives prior to (earlier than) the matching receive request activation by the
receiver. These unexpected messages are in fact “expected” from standpoint of the user program
but not yet posted.

The definition of the receive posted and unexpected queues is relevant to MPI libraries
that perform the matching at the receiver process. PERUSE introduces a similar definition about
expected and unexpected queues with respect to the sender process for MPI libraries that perform
the matching at the sender process. Hybrid matching models are also possible.

It is important to note that the above definition allows for two alternative models of MPI
message protocol implementations – “pull” based and “push” based – and that PERUSE does not
impose an implementation requirement of push, pull, or both models. Both of these message
protocol models can support the MPI two-sided communication semantics correctly. According
to the first model, the MPI library will inform the receiver about the envelope of the send
message only after the send request has been posted, regardless of whether the matching receive
request has been posted before or after the send request. According to the second model, the MPI
library will notify the sender about the envelope of the expected message at the receiver process
only after the receiver posts its receive request, regardless of whether the send request has been
posted before or after the receive request. In this second model, the sender cannot initiate a
message transfer before the receiver sends the message envelope. A third, hybrid model is also
possible, and allowed by the PERUSE definition of expected and unexpected queues. For
simplicity of the presentation, the following explanations are introduced only for the receiver
based matching model. These explanations can also be related to the sender based matching
without additional semantic changes.

The expected (posted) receive queue defined by PERUSE contains requests that are
posted by the receiver before the matching send requests have been posted (or more precisely,
before the send message envelope have arrived at the receiver). The time that a receive request
spends on the posted queue is the period between the moment when the user calls an MPI
function for activation of a receive request (MPI_Recv, MPI_Irecv, or MPI_Start on a persistent
receive request created by MPI_Recv_init) and the moment when the library receives a message
envelope that matches the posted request. A possible analysis based on the duration of the time
that a request spends on the posted queue may conclude that the particular request may have
been completed earlier if the algorithm can allow the matching send message to be sent earlier.

The unexpected message queue contains message envelopes (possibly also including the
actual message data) of messages that have arrived before a matching receive request has been
posted. The duration of time a message spends on the unexpected queue or the length of this
queue may indicate to the MPI performance analyst that this particular process falls behind the
other processes in the MPI job and is unable to process the incoming messages in a timely
manner. This may indicate a performance and scalability bottleneck in the parallel system. Such
critical information for a detailed performance analysis is unavailable through PMPI.

1 This documents uses interchangeably the terms “post” and “activate” in relation to message requests.
2 This does not apply to MPI_Rsend().

15

4. EVENTS

PERUSE events are one of the fundamental concepts of PERUSE. These events are
connected to certain activities/phases of the internal MPI processing associated with user
message requests. Examples of such events are the insertion/removal of requests into/from the
posted or the unexpected request queues.

This section of the document presents the events and their descriptions defined in this
specification. In this version of the specification, only events related to point-to-point
communication and request queue operations are provided. These events are registered with
communication (MPI_Comm) objects. Collective operations events associated with MPI_Comm
objects as well as events associated with MPI_File and MPI_Win are discussed in Appendix E
and are subject of further clarification in subsequent versions of the specification. The diagram
below illustrates possible events associated with an MPI_Send. Actual events and the time that
the callback is expected will differ depending upon the MPI implementation. For example, the
events and callback timing for an RDMA based system, shared memory based system, and tcp/ip
based system will likely have differences.

4.1 Association of events with requests
In order to allow PERUSE users to make efficient use of the event callbacks, a

mechanism for correlating events related to the same message requests is needed. In response to
this need, PERUSE requires that the MPI library pass the same request identifier to the event
callbacks when the callbacks are associated with the same message request. The identifier must
be unique during the period between the creation of the request and its release. This uniqueness
is necessary for PERUSE users to be able to relate measurements taken during the event callback
invocations to the same internal request, thus allowing for the collection of valid performance
data. There are no other requirements on the request identifier.

PERUSE providers may elect to pass to PERUSE event callbacks the MPI_Request
handles as the unique identifier, if the requests were created with calls to the non-blocking MPI

Illustrating Possible Events from an MPI_Send

MPI Library Code

Start Processing

USER Code

Last byte of data transfer
 is scheduled

The Request has completed

First byte of data transfer
 is scheduled

16

API’s. However, this is not mandatory and the PERUSE implementation is free to choose any
mechanism for generating unique identifiers as long as it meets the uniqueness requirement.

It is important to note that PERUSE does not provide mechanisms for uniquely linking
callback events to specific user level MPI API calls. Although clearly useful, such linking is not
sufficiently supported by MPI’s API - MPI does not provide unique identifiers/handles for all
user requests, as in the case with blocking MPI_Send and MPI_Recv. In order to assist PERUSE
users in achieving such linking (if desired), PERUSE requires that the MPI libraries pass a
request specification parameter to the event callbacks (see section 5.1.2 for more details). This
parameter carries information about the input parameters passed to the MPI calls that the user
made in order to create the particular message request.
4.2 Scope of PERUSE events

In its current version, all PERUSE events have local scope. Events with global scope may
be able to also provide useful performance information. However, such events will require
communication of control packets for the exchange of event-related information and facilities for
handling such control communication. This is considered beyond the current scope and purpose
of PERUSE but may be pursued in future efforts. Through its callback mechanism, PERUSE
allows layered tools to be invoked by the library on the critical message processing path and
possibly make correlation between events on remote processes. This approach could be
successfully used for implementing global events.
4.3 Point-to-point communication events

Point-to-point events are intended to trace the phases of the execution of a user request
from its creation to the user notification of its completion. The event definitions and descriptions
are followed by a request processing flow diagram that specifies the sequence in time of the
generation of these events.

The events in this section are divided into two groups – (i) PERUSE_COMM_REQ
events generated during activities associated with MPI processing of user requests and (ii)
PERUSE_COMM_MSG events generated when an incoming message that will be used in point-
to-point matching with user requests arrives. The second type of events is not associated with
any particular user request and will have a unique ID different from the request unique ID
matched to the incoming message. The rationale for the second type of events is that these events
can help PERUSE users to observe activities related to incoming messages and unexpected
queues and discover processing or communication imbalances in the MPI jobs. For example, if
the average time for a message spent in the unexpected queue is large, this may indicate to the
MPI application designer that the observed process is falling behind possibly as a result of larger
processing or communication load. The designer can then attempt to improve the load balance by
altering the data distribution or communication pattern of the application algorithm.

The two groups of events (REQ and MSG) are indicated with different line styles in the
event diagram. The solid lines show transitions between REQ events and these events are
associated with user requests. All events connected with solid lines will have the same unique
request ID for the same user request. The dashed lines represent MSG events. They will have the
same unique ID for the same incoming message, but it will be different then the unique ID of the
request to which the message will be matched.
4.3.1 Request and message event definition and description
PERUSE_COMM_REQ_ACTIVATE This event indicates that the MPI library starts processing that

would lead to the message transfer specified by the user request.
This event will be generated by MPI_Start, MPI_Startall,
MPI_Irecv, MPI_Isend as well as in MPI_Send and MPI_Recv.

17

Rationale. This event indicates to the PERUSE user that the MPI
library has entered the critical message path. A time stamp here
can be used as a mark to measure various time periods, such as
ACTIVATE to XFER_BEGIN, or ACTIVATE to COMPLETE.

PERUSE_COMM_REQ_MATCH_UNEX This event is generated when the MPI library matches a user
request to an unexpected message.
Rationale. This event can be used in determining the delay
between the moment when the request is matched and the
beginning of the message transfer.

PERUSE_COMM_REQ_INSERT_IN_POSTED_Q The MPI library inserts a request in the posted request queue. No
match was found to an unexpected message in the unexpected
queue.
Rationale: This event can be used to measure how long a request
stayed in the posted queue before it was matched as well as the
length of the posted queue.

PERUSE_COMM_REQ_REMOVE_FROM_POSTED_Q The MPI library removes a request from the posted request queue
as a result of successful matching to an incoming message. This
can be caused by MPI_Cancel().
Rationale: See
PERUSE_COMM_REQ_INSERT_IN_POSTED_Q.

PERUSE_COMM_REQ_XFER_BEGIN This event indicates that the MPI library has schedules the first
data transfer associated with the message transfer specified by the
user request. The message transfer may be composed of multiple
data transfers. Control messages used by MPI library protocols
are not counted as part of the message transfer. See sections 3.1
and 3.2 for more detail.
Rationale: This event can be used by PERUSE users to measure
how long it took the MPI library to begin a message transfer after
the user request was posted and started. Long delays can indicate
that messages are not progressed in a timely fashion. If the library
does not have an independent message progress engine, this may
indicate that the user process may need to call the MPI library
more frequently in order to help in the progress of the scheduled
messages.

PERUSE_COMM_REQ_XFER_END The callback is called with this event when the MPI library has
scheduled the data transfer (with the last byte) of the user
message for transmission with the underlying communication
method.
Rationale: MPI libraries commonly use specifically designed
protocols for exchanging messages. Depending on the
implementation of these protocols and the interaction between the
user process and the MPI library, these protocols may not operate
in a fashion that is expected by the user. This event, in
collaboration with the XFER_BEGIN and REQ_START can give
an indication of how quickly the messages are sent once the user
posts a send request.

PERUSE_COMM_REQ_COMPLETE The callback will be called when the MPI library marks the
request completed for internal purposes. If the user can make a
synchronization call, such as MPI_Wait to MPI_Test following
this event, this synchronization call will succeed.
Rationale: PMPI does not allow to check when the
communication associated with a request is actually completed.
Overly long times from completion to notification can indicate to
the programmer that checks for completion can be made earlier
or more frequently.

PERUSE_COMM_REQ_NOTIFY The user process is notified about the request completion. The
callback is called during a synchronization call, such as
MPI_Wait and MPI_Test or before the library return from
MPI_Send or MPI_Recv.
Rationale: See PERUSE_COMM_REQ_COMPLETE

PERUSE_COMM_MSG_ARRIVED This event is generated when the MPI library receives an
incoming message from the communication layer, which will be
used for matching with user requests. Control messages or
messages associated with one-sided communication and file I/O
will not generate this event.

18

used for matching with user requests. Control messages or
messages associated with one-sided communication and file I/O
will not generate this event.

PERUSE_COMM_MSG_INSERT_IN_UNEX_Q The MPI library inserts an unexpected (early arrival) message
into the unexpected queue. The arriving message is not matched
to a request in the posted queue.
Rationale: This event can be used to measure how long a request
stayed in the unexpected queue before it was matched as well as
the length of the unexpected queue.

PERUSE_COMM_MSG_REMOVE_FROM_UNEX_Q The MPI library removes a message from the unexpected
message queue as a result of successful matching to a user
request.
Rationale: See
PERUSE_COMM_MSG_INSERT_IN_UNEX_Q.

PERUSE_COMM_MSG_MATCH_POSTED_REQ This event is generated when the MPI library matches an
incoming message to a posted request. The message will not be
inserted to the unexpected queue.

4.3.2 Request and message event diagram

4.4 Queue search events
The queue events are intended for measurements of the internal processing overhead that

the MPI libraries incur in operations related to request and message matching. Two categories of
events are defined – events related to posted queues and events related to unexpected queues.

PERUSE_COMM_SEARCH_POSTED_Q_BEGIN This event is generated when the library begins a search in the
posted queue for matching an incoming unexpected queue.
Rationale: Using this event, users can observe the time spent on
searching in the unexpected queue. This information may help
to discover source of application communication optimization
so that the size of the unexpected queues is reduced, thus
reducing the processing overhead associated with searching.

User Code Communication Layer User Code

MPI Library Code

MPI_Start,
MPI_Isend,
MPI_Send

MPI_Irecv,
MPI_Recv

REQ_ACTIVATE REQ_ACTIVATE

REQ_XFER_BEGIN

REQ_INSERT_
IN_POSTED_Q

REQ_REMOVE_FROM
POSTED_Q

REQ_MATCH
UNEX

MSG_ARRIVED

MSG_INSERT_IN_
UNEX_Q

MSG_REMOVE_
FROM_UNEX_Q

MSG_MATCH
POSTED_REQ

Incoming Unexpected/
Early arrival message MPI_Wait, MPI_Test,

MPI_Send, MPI_Recv

REQ_XFER_END

REQ_COMPLETE

REQ_NOTIFY

19

reducing the processing overhead associated with searching.
PERUSE_COMM_SEARCH_POSTED_Q_END This event is generated when the MPI library finishes a search

in the posted queue for matching of an incoming unexpected
message.
Rationale: See
PERUSE_COMM_SEARCH_POSTED_Q_BEGIN.

PERUSE_COMM_SEARCH_UNEX_QUEUE_BEGIN The event is generated when the library begins a search in the
unexpected queue for matching a posted request to an
unexpected message. This event together with
PERUSE_COMM_SEARCH_UNEX_Q_END gives
information about the processing overhead related to matching a
posted request. This overhead will depend on the length of the
unexpected queue.
Rationale: Using this event, users can observe the time spent on
searching in the unexpected queue. This information may help
to discover source of application communication optimization
so that the size of the unexpected queues is reduced, thus
reducing the processing overhead associated with searching.

PERUSE_COMM_SEARCH_UNEX_Q_END This event is generated when the MPI library finishes a search
for matching in the unexpected queue.
Rationale: See
PERUSE_COMM_SEARCH_UNEX_QUEUE_BEGIN.

5. PERUSE API

The PERUSE design offers a uniform and compact API (presented in section 5.2 and
Appendix A) with an extensible structure that enables easy addition of new events. The small
number of functions is intended to facilitate easy adoption by parallel development application
tool developers. End users familiar with an asynchronous callback programming paradigm may
find PERUSE useful for tuning studies, but we recommend parallel development tools when
available. PERUSE is composed of a set of data types and constants and a set of function calls,
forming the API of the interface. The PERUSE specification defines only C bindings.
5.1 PERUSE types and constants

PERUSE defines the following types –
• peruse_event_h
• peruse_comm_spec_t
• peruse_comm_callback_f

These types are defined in the peruse.h header file. The peruse_event_h type represents
the PERUSE event handle. It is an opaque object that is intended to improve portability of the
interface, to facilitate different compliant implementations, and to help users write portable
layers on top of PERUSE. The actual type definition (typedef) is left to the implementers. The
peruse_xxx_callback_f are the types for the user callback functions that are used for notifying the
PERUSE user when events of interest occur. The peruse_xxx_spec_t types are used to provide to
user callbacks information about the specific MPI operation that caused the invocation of the
callback. Since the MPI standard does not provide a mechanism for explicit annotation of
communication and I/O operations, this information can be used by the callbacks to make a
correlation between the MPI library processing that caused the callback invocation and a specific
user request. More discussion on this topic was presented in section 4.1. The fields in the
peruse_xxx_spec_t types provide the values that the user passed to the MPI library when making
the communication or I/O requests whose processing resulted in the callback invocation.

20

PERUSE also uses a number of constants whose declarations are left to the
implementations. All constants must be of C integer types int or long. PERUSE constant
declarations can be enumerations, C definitions, or constant declarations and will be listed in
peruse.h. Variables of type int initialized during PERUSE_Init() are also permitted. However, in
this case, the vendor should provide adequate documentation to explain any pertinent
restrictions. Appendix A provides and example peruse.h C header file. Appendix D provides a
list of the constants that must be supported by all PERUSE implementations.
5.1.1 Event handles (peruse_event_h)

PERUSE defines two separate terms for representing events – event descriptors and event
handles. Event descriptors describe the events supported by PERUSE and their meaning. Event
descriptors do not suggest any processing by the PERUSE-enabled MPI library. They are used
for the creation of event handles of type peruse_event_h. The event handles represent objects
that can be acted upon by the MPI library. The concept of an event handle is introduced in order
to allow the user to associate an event descriptor with the context of MPI objects. The MPI
object is a communicator (MPI_Comm). Operations on these objects result in communication or
I/O activities, which are of interest to this specification. The association of an event descriptor
with an MPI object resulting in an event handle is achieved through the invocation of the
appropriate PERUSE_Event_comm_register() call. The prefix of the name of each event
indicates with which MPI object this event is supposed to be registered.

PERUSE event handles have two states: active and inactive. The term activation window
is defined as the period during which event callbacks will be called when the MPI event of
interest occurs. (Note that PERUSE activation windows can be overlapping; more than one
PERUSE window may be active at any given time.) Event handles are inactive during the
following periods of the handle lifecycle:

• between handle initialization and opening of the handle activation window, and
• between closing of the activation window and a subsequent activation of the window or

handle release.
The activation window of handle is opened with PERUSE_Event_activate() and closed

with PERUSE_Event_deactivate(). The MPI library will not invoke callbacks for inactive event
handles. Once the window of a handle is activated, the MPI library will start invoking the
callback registered with the event handle at the locations where the library performs relevant to
the event operations. If a given event handle is in its window of activation (i.e., it is activated),
but the MPI library does not perform relevant operations, the callback will not be invoked.

In summary, in order to cause the MPI library to invoke the event callback the user
program must:

• create an event handle for this event by providing a callback function and associating the
event descriptor with the desired MPI object,

• activate the event handle by calling PERUSE_Event_activate (), and
• perform MPI activities that are related to the event in question.

If a user creates event handles by attaching the same event descriptor to different MPI
objects (for example, MPI_COMM_WORLD and a duplicate of it), the resulting event handles
are independent and distinct and their activation windows will not be related in any way. As a
result, the user can monitor the same event associated with different MPI objects.

PERUSE allows users to create multiple event handles by attaching the one event
descriptor to the same MPI object in different event registration calls. These handles are distinct
and their activation windows will be also independent. For example, if an activation window of
one of these event handles is opened, the activation windows of the rest are unaffected. The

21

PERUSE implementation will invoke the callbacks of all activated events in some order. Also,
the user can register the same or different callback functions for these event handles. This
functionality can be used by multithreaded user programs or by layered MPI libraries. These
topics are discussed in more detail further in this document.
5.1.2 User callbacks

PERUSE provides a callback for the MPI object with which PERUSE events can be
associated (MPI_Comm); the prototype for this callback is:

typedef int (peruse_comm_callback_f)(peruse_event_handle event_h, MPI_Aint unique_id,
peruse_comm_spec_t *spec, void *param);

PERUSE callbacks are designed to represent an event-based model for data collection.
This model assumes that the user process will perform the actual data collection and statistics
processing. The user process can be an instrumented application or a performance-monitoring
tool. The registration of user callbacks with event handles is achieved in the event handle
constructors PERUSE_Event_xxx_register. The callbacks can be set to new values with
PERUSE_Event_xxx_callback_set. When a new callback is set, the old callback is lost.
Callbacks can be registered with PERUSE_Event_xxx_callback_set only while the handles are
inactive. If the handles are active, callback registration will fail. The value of the currently
registered callback can be obtained by PERUSE_Event_xxx_callback_get, which can be called
on an event handle in both active and inactive state.

The user callbacks are invoked when the MPI library performs activities relevant to the
event represented by its event handle. The definition of PERUSE events specifies when events
are generated by the MPI library. The constraints on the callback code are as follows:

• When a callback is invoked, it is undefined if the MPI library is under a lock or not and
the callback code should not make any assumptions about the lock state of the MPI
library;

• Callbacks should be prepared to be invoked from different threads when used with MPI
implementations with independent progress engine using internal system threads;

• Callbacks should be signal safe as some MPI libraries use signals for their progress
engine and the callback can be invoked form within a signal handler;

• Callbacks should not make any MPI library calls with the exception of MPI_Wtime()
and MPI_Wtick();

• Callbacks should not hold any locks that are placed around MPI calls in the main code.
• Callbacks should be limited to “read-only” operations on PERUSE handles.
When a user defined callback is invoked, four parameters are passed to this callback (see

the definition of the user callback prototypes):
• event_handle
• unique_id
• spec
• param

The event_handle parameter is the event handle for the event that was registered with the
specific MPI object. Using this handle, the callback can perform allowed operations on the
handle, e.g., using PERUSE_Event_get call, the callback can obtain the event descriptor for
event_handle.

22

The parameter unique_id is for providing user callbacks with the capability to associate
different events for processing of the same request, message, or queue. This parameter is opaque
and is implementation-dependent. User callbacks cannot make any assumptions about the actual
values of the unique_id parameter. The scope of uniqueness of unique_id is defined in the
following table, depending on the type of events generated. Once the ending event is generated,
the value passed to unique_id can be reused by the library for a different request, message, or
queue and the callback code needs to make appropriate adjustments in order to avoid correlation
of unrelated events:

Unique_id scope
Beginning Event Ending Event

PERUSE_COMM_REQ_ACTIVATE PERUSE_COMM_REQ_NOTIFY

PERUSE_COMM_MSG_ARRIVED
PERUSE_COMM_MSG_REMOVE_FROM_UNEX_Q
or
PERUSE_COMM_MSG_MATCH_POSTED_REQ

PERUSE_COMM_SEARCH_POSTED_Q_BEGIN PERUSE_COMM_SEARCH_POSTED_Q_END
PERUSE_COMM_SEARCH_UNEX_QUEUE_BEGIN PERUSE_COMM_SEARCH_UNEX_Q_END

The third callback parameter spec is a pointer to a peruse_xxx_spec_t structure that holds
information related to the user request that caused the callback invocation. The memory for this
structure is allocated and managed by the MPI library. The memory contents is guaranteed to be
valid and consistent for the duration of the callback execution. Upon return from the callback,
the MPI library can de-allocate the memory for the spec structure or can modify its contents.

One of the fields of the spec structure is the handle to the MPI object with which the
event handle was associated. This handle was also passed by the user in the user request that
resulted in the callback invocation. The remaining fields of the spec structures contain the
complete request specification in order to allow the code in the callback to correlate the
particular callback invocation with a specific user request. The “operation” field has the
following values PERUSE_SEND, PERUSE_RECV, PERUSE_PUT, PERUSE_GET,
PERUSE_ACC, PERUSE_IO_READ, and PERUSE_IO_WRITE and indicates the type of
communication or file I/O operation that caused the callback invocation.

For example, if an event handle is registered by the following call:
PERUSE_Event_comm_register(PERUSE_COMM_REQ_COMPLETE, MPI_COMM_WORLD,

my_comm_callback, NULL, &my_event_h);
and a subsequent call to:

MPI_Recv(my_buf, 100, MPI_INT, 5, 1001, MPI_COMM_WORLD, &status);
is made, the user callback my_comm_callback will be invoked when the request corresponding to
the MPI_Recv call is marked for internal completion with the following values of its input
parameters:

event_h = my_event_h
unique_id = <uid>
spec = {

comm = MPI_COMM_WORLD,
buf = my_buf,
count = 100
datatype = MPI_INT
peer = 5
tag = 1001
operation = PERUSE_RECV
}

param = NULL

23

The param callback parameter is the same parameter passed by the user when the
callback was registered. Commonly, this parameter would be the address of some control
structure that the callback can use in order to obtain context that might be necessary for its
operation. It can also be used for exchanging information between the main user code and the
callback. This parameter is meaningful only to the user code and is transparent to the MPI
library.

User callbacks are invoked by the PERUSE-enabled MPI library; hence, this library will
also obtain the return values of the callbacks. If successful, user callbacks return
MPI_SUCCESS. All non-success returns are fatal with the MPI library simply reporting the
error was returned by a PERUSE upcall and then cleanly bringing down the job.

Note that while MPI Collectives are not included in this specification, collective calls
may generate a point-to-point call back; this will depend on the implementation.
5.2 PERUSE Function Calls

This sub-section describes in detail the API function calls of PERUSE. The functions
constituting the API are declared in the peruse.h header file (an example version of peruse.h is
provide in Appendix A). Programs using PERUSE must include peruse.h. The API contains the
following function groups: environment initialization, event handle registration, event handle
manipulation, and user callback manipulation. A complete list of all PERUSE calls is provided in
Appendix C.

The return values of PERUSE function calls are defined in peruse.h. PERUSE functions
can return error codes that indicate that an input MPI parameter is invalid. These return codes are
semantically equivalent to the corresponding MPI_ERR_XXX error classes. For example,
PERUSE_ERR_COMM indicates that if the input MPI_Comm argument was used in a standard
MPI call, the MPI library would have returned an error of class MPI_ERR_COMM. The list of
all PERUSE functions return values and their meaning is provided in Appendix D.

5.2.1 PERUSE_Init
Synopsis

int PERUSE_Init()
Input parameters

Output parameters

Return value
PERUSE_SUCCESS, PERUSE_ERR_MPI_INIT,

Description
Used for initialization of PERUSE library run-time infrastructure. Must be called before any other
PERUSE function. Must be called after MPI_Init and before MPI_Finalize.

PERUSE_Init may be called from multiple tools.

PERUSE_ERR_MPI_INIT is returned if PERUSE_Init is called before MPI_Init or MPI_Finalize. It
is advisable that the user calls PERUSE_Init before any MPI communication operations are
initiated as the MPI library may perform communication-related activities that could interfere with
the initialization of PERUSE. When multiple calls to MPI_Init are made, only the first initializes
PERUSE – the others are equivalent to NOOP and return PERUSE_SUCCESS;

5.2.2 PERUSE_Query_supported_events
Synopsis

int PERUSE_Query_supported_events(int *num_supported, char ***event_names, int **events);
Input parameters

24

n/a
Output parameters

num_supported – number of supported events and size of the event_names array
event_names – an array of the string names of all supported events
events – an array of the event descriptor identifiers corresponding to the string names

Return value
PERUSE_SUCCESS

Description
This function is intended to provide a portable way for determining what events are implemented
by the particular PERUSE implementation. In conjunction with PERUSE_Query_event, by using
this function, users can write fully portable programs. Also, this function enables vendors to
provide implementation specific events that are not defined in the PERUSE specification. The
event_names and events arrays are maintained internally by the implementation and are
guaranteed to be valid between PERUSE_Init and MPI_Finalize. The caller does not allocate or
free any space for these arrays. The function always returns PERUSE_SUCCESS. In the case
when the implementation does not provide any events, num_supported is set to 0, and both
event_names and events output parameters are set to NULL.

5.2.3 PERUSE_Query_event
Synopsis

int PERUSE_Query_event(const char *event_name, int *event);
Input parameters

event_name – NULL terminated string containing the name of an event
Output parameters

event – event descriptor corresponding to event_name
Return value

PERUSE_SUCCESS, PERUSE_ERR_EVENT
Description

This function is used for querying the PERUSE implementation about the support of the event
described by event_name in a portable manner that will also facilitate vendor specific non-
standard extensions. If the event specified by event_name is supported, the function returns
PERUSE_SUCCESS and the output parameter event contains the corresponding event
descriptor, which can then be passed to event handle constructors. If the event is not supported,
the function returns PERUSE_ERR_EVENT and event is set to PERUSE_EVENT_INVALID. Any
NULL terminated string can be passed as input value of event_name. The actual strings are
implementation dependent. Suggested values of the event_name are the names of the constants
defined in the PERUSE header file and as presented in this specification. This will improve code
portability. For example, a query for the availability of PERUSE_COMM_REQ_XFER_BEGIN will
look as follows:

rv = PERUSE_Query_event(“PERUSE_COMM_REQ_XFER_BEGIN”, &event).
If the return value rv is PERUSE_SUCCESS, the value of event will be set to the event descriptor
for the event in question, which can be passed to PERUSE functions that accept event
descriptors as an input parameter.

5.2.4 PERUSE_Query_event_name
Synopsis

int PERUSE_Query_event_name(int event, char **event_name);
Input parameters

event – event descriptor corresponding
Output parameters

event_name – a pointer to an internal string
Return value

PERUSE_SUCCESS, PERUSE_ERR_EVENT
Description

25

This function is used for obtaining the string name of the input event. If the event is supported by
the PERUSE implementation a pointer to string name representation of event is returned in
event_name. This function is opposite of PERUSE_Query_event. PERUSE_ERR_EVENT is
returned if event is invalid. The output is a pointer to an internally to the MPI library maintained
string. The caller does not allocate memory for event_name and should not free the pointer
returned. The pointer is guaranteed to be valid between PERUSE_Init and MPI_Finalize.

5.2.5 PERUSE_Query_environment
Synopsis

int PERUSE_Query_environment(int *env_size, char ***env)
Input parameters

n/a
Output parameters

env_size – number of elements in env
env – array of NULL terminated strings

Return value
PERUSE_SUCCESS

Description
This function provides the environment variables and their values that affect the behavior of the
MPI library. The MPI-specific environment is returned through the env output parameter as an
array of NULL terminated strings. Each string is of the form <env_var>=<value>. The output
parameter env_size specifies the number of elements in env. All strings in env are allocated
internally by the MPI library during MPI_Init and are guaranteed to exist until MPI_Finalize is
called. If no the MPI library does not use any environment variables, env_size is set to 0 and env
to NULL.

5.2.6 PERUSE_Query_queue_event_scope
Synopsis

int PERUSE_Query_queue_event_scope (int *scope)
Input parameters

n/a
Output parameters

scope – scope of queue events
Return value

PERUSE_SUCCESS
Description

This function provides information about the scope of queue events. Some MPI implementations
keep only one pair of queues for posted and unexpected messages. Providing information on a
per-communicator basis for these implementations may be complex and performance intrusive.
These libraries may elect to provide information only for the global queue pair. In this case, the
return value of scope will be PERUSE_GLOBAL. If queue events are generated on a per-
communicator basis, the value of scope is set to PERUSE_PER_COMM. Other options are
PERUSE_PER_TAG, PERUSE_PER_SOURCE and PERUSE_PER_PEER.

5.2.7 PERUSE_Event_comm_register
Synopsis

int PERUSE_Event_comm_register(int event, MPI_Comm comm,
peruse_comm_callback_t *callback_fn, void *param, peruse_event_h *event_h)

Input parameters
event – event descriptor
comm – valid MPI communicator handle
callback_fn – user callback
param – user-specific data

Output parameters

26

event_h – inactive event handle
Return value

PERUSE_SUCCESS, PERUSE_ERR_EVENT, PERUSE_ERR_COMM,
PERUSE_ERR_PARAMETER

Description
Used to create an event handle event_h related to an MPI communicator by associating the event
descriptor event and communicator handle comm. The user callback callback_fn is registered
with the output event handle. This callback function will be called when the MPI library performs
an action that will affect the event described by event_h. If callback_fn is NULL,
PERUSE_ERR_PARAMETER will be returned. PERUSE_ERR_EVENT will be returned if the
input event descriptor is invalid, and PERUSE_ERR_COMM if the comm handle is invalid.
PERUSE_ERR_COMM indicates that the MPI library would have returned MPI_ERR_COMM
class if the user code tried to reference comm in an MPI call.

Note that PERUSE activation window permits overlap.

5.2.8 PERUSE_Event_activate
Synopsis

int PERUSE_Event_activate(peruse_event_h event_h)
Input parameters

event_h – event handle
Output parameters

n/a
Return value

PERUSE_SUCCESS, PERUSE_ERR_EVENT_HANDLE, PERUSE_ERR_MPI_OBJECT
Description

Opens an event activation window. The input event handle becomes active and the library will
start invoking the user callback function registered with event_h every time that the library
performs an activity which affects the event. If the input handle event_h has already been
activated, the function will return PERUSE_SUCCESS. If PERUSE_EVENT_HANDLE_NULL is
passed as an input parameter, the function returns PERUSE_ERR_EVENT_HANDLE. The return
code PERUSE_ERR_MPI_OBJECT is returned if the MPI object with which event_h is
associated has been freed.

In a multi-tool scenario, PERUSE_Event_activate has global scope (effects all tools).

5.2.9 PERUSE_Event_deactivate
Synopsis

int PERUSE_Event_deactivate (peruse_event_h event_h)
Input parameters

event_h – event handle
Output parameters

n/a
Return value

PERUSE_SUCCESS, PERUSE_ERR_EVENT_HANDLE, PERUSE_ERR_MPI_OBJECT
Description

Closes an event activation window. As a result, the input event handle becomes inactive and the
library will stop calling the user callback registered with event_h. If the input event handle event_h
is inactive, the function has no effect and will return PERUSE_SUCCESS. If
PERUSE_EVENT_HANDLE_NULL is passed as an input parameter, the function returns
PERUSE_ERR_EVENT_HANDLE. The return code PERUSE_ERR_MPI_OBJECT is returned if
the MPI object with which event_h is associated has been freed.

5.2.10 PERUSE_Event_release
Synopsis

27

int PERUSE_Event_release(peruse_event_h *event_h)
Input parameters

event_h – event handle
Output parameters

event_h – invalid event handle (PERUSE_EVENT_HANDLE_NULL)
Return value

PERUSE_SUCCESS, PERUSE_ERR_EVENT_HANDLE, PERUSE_ERR_MPI_OBJECT
Description

Frees an active or inactive event handle and sets event_h to PERUSE_EVENT_HANDLE_NULL.
Any subsequent uses of this event handle will lead to an error PERUSE_ERR_EVENT_HANDLE.
If PERUSE_EVENT_HANDLE_NULL is passed as an input parameter, the function returns
PERUSE_ERR_EVENT_HANDLE. The return code PERUSE_ERR_MPI_OBJECT is returned if
the MPI object with which event_h is associated has been freed.

5.2.11 PERUSE_Event_get
Synopsis

int PERUSE_Event_get(peruse_event_h mh, int *event)
Input parameters

Event_h – event handle
Output parameters

event – event descriptor that was used for event handle creation
Return value

PERUSE_SUCCESS, PERUSE_ERR_EVENT_HANDLE, PERUSE_ERR_MPI_OBJECT
Description

Performs a reverse lookup for discovering the event descriptor that was passed as an input
parameter when the event_h event handle was created using the PERUSE_Event_xxx_register
calls. If PERUSE_EVENT_HANDLE_NULL is passed as an input parameter, the function returns
PERUSE_ERR_EVENT_HANDLE. The return code PERUSE_ERR_MPI_OBJECT is returned if
the MPI object with which event_h is associated has been freed.

5.2.12 PERUSE_Event_object_get
Synopsis

int PERUSE_Event_object_get(peruse_event_h mh, void **mpi_object)
Input parameters

event_h – event handle
Output parameters

mpi_object – an opaque handle of the MPI object to which this event handle is attached
Return value

PERUSE_SUCCESS, PERUSE_ERR_EVENT_HANDLE, PERUSE_ERR_MPI_OBJECT
Description

At return, the output mpi_object parameter contains the handle of the MPI object that was used
when the input event_h event handle was created. If PERUSE_EVENT_HANDLE_NULL is
passed as an input parameter, the function returns PERUSE_ERR_EVENT_HANDLE. Since the
type of the output parameter is void*, the caller must know what kind of MPI object is expected in
order to perform appropriate type casting. It is the user’s responsibility to ensure the validity of the
returned MPI handle. The returned handle is a copy of the original MPI handle passed to the
specific PERUSE event initialization function. The return code PERUSE_ERR_MPI_OBJECT is
returned if the MPI object with which event_h is associated has been freed. For more details, see
the section that treats the relationship between MPI handles and PERUSE event handles.

5.2.13 PERUSE_Event_comm_callback_set
Synopsis

int PERUSE_Event_comm_callback_set(peruse_event_h event_h,
peruse_comm_callback_t *callback_fn, void *param)

Input parameters

28

event_h – event handle
callback_fn – user defined callback function
param – user specific parameter that will be passed to the callback function

Output parameters
n/a

Return value
PERUSE_SUCCESS, PERUSE_ERR_EVENT_HANDLE, PERUSE_ERR_PARAMETER,
PERUSE_ERR_MPI_OBJECT

Description
This function associates a user defined communicator callback_fn function with an inactive event
handle event_h. The event_h and param input parameters will be passed to callback_fn when it is
invoked. The old callback will be lost and only the callback registered with this call will be kept. If
PERUSE_EVENT_HANDLE_NULL is passed as an input parameter or event_h is active, the
function returns PERUSE_ERR_EVENT_HANDLE. If NULL is passed as callback_fn,
PERUSE_ERR_PARAMETER will be returned. PERUSE_ERR_MPI_OBJECT is returned if the
MPI object with which event_h is associated has been freed.

5.2.14 PERUSE_Event_comm_callback_get
Synopsis

int PERUSE_Event_comm_callback_get(peruse_event_h event_h,
peruse_comm_callback_t **callback_fn, void **param)

Input parameters
event_h – event handle

Output parameters
callback_fn – user defined callback function
param – user specific parameter that was passed to the callback function

Return value
PERUSE_SUCCESS, PERUSE_ERR_EVENT_HANDLE, PERUSE_ERR_MPI_OBJECT

Description
This function obtains the user defined callback function that is associated with the event handle
event_h. The value of the output parameter param is the one passed in by the user when the
callback was registered. If PERUSE_EVENT_HANDLE_NULL is passed as an input parameter or
mh is active, the function returns PERUSE_ERR_EVENT_HANDLE.
PERUSE_ERR_MPI_OBJECT is returned if the MPI object with which event_h is associated has
been freed.

5.2.15 PERUSE_Event_propagate
Synopsis

int PERUSE_Event_propagate(peruse_event_h event_h, int mode)
Input parameters

Event_h – event handle
mode – propagation mode of event handle when the MPI object is duplicated

Output parameters
n/a

Return value
PERUSE_SUCCESS, PERUSE_ERR_EVENT_HANDLE, PERUSE_ERR_MPI_OBJECT

Description
This function sets a propagation mode of an inactive event handle event_h. The default

propagation mode of all handles is 0 (false). This mode will remain unchanged unless is explicitly set by
this function. If 1(true) is specified as input to this function, the callback registered with the event handle
event_h will be propagated to MPI objects that are obtained as a result of duplication of the original MPI
object with which the handle event_h was initially associated. If the propagation mode is turned on, the
event handle callback will be invoked by operations performed on the duplicated MPI object in the same
way as they are for the original MPI object. If PERUSE_EVENT_HANDLE_NULL is passed as an input
parameter or event_h is active, the function returns PERUSE_ERR_EVENT_HANDLE. If event_h is

29

associated with an MPI object, which cannot be duplicated, the behavior of event_h and its callback will
not be affected, i.e., PERUSE_Event_propagate is equivalent to NOOP in these cases.
PERUSE_ERR_MPI_OBJECT is returned if the MPI object with which event_h is associated has been
freed.

5.2.16 PERUSE_Lock
Synopsis

int PERUSE_Lock()
Input parameters

n/a
Output parameters

n/a
Return value

PERUSE_SUCCESS, PERUSE_ERR_LOCK, PERUSE_LOCK_NOT_GRANTABLE
Description

This function provides for mutual exclusion in multi-threaded MPIs. In multi-threaded MPIs, it’s
use is required to guarantee correctness in the presence of multiple threads (e.g. updates on a linked
list). If PERUSE_Lock has already been called by another thread, the calling thread blocks until the
PERUSE Code mutex becomes available. This operation returns with the calling thread as its owner.
Only lock free implementations of MPI_Wtime() and MPI_Wtick() are permitted within code segments
guarded by PERUSE_Lock and PERUSE_Unlock. PERUSE_LOCK_NOT_GRANTABLE remains true
during the scope (entire life) of the upcall that found it could not grant the lock.

Advice to PERUSE users: A single "lock_not_grantable" leaves the state of the data
from the tool dubious for the remainder of the job if the tool reacts by dropping the
record. In such cases, the tool writer might want to set a flag of their own to record that
fact. This may safely be accomplished by a flag, Records_lost, that is statically initialized
to FALSE which it sets to TRUE if there is a "lock_not_grantable" return.

5.2.17
 PERUSE_Unlock

Synopsis
int PERUSE_Unlock()

Input parameters
n/a

Output parameters
n/a

Return value
PERUSE_SUCCESS, PERUSE_ERR_LOCK

Description
This function releases the PERUSE code mutex. If a thread attempts to unlock a mutex that it has

not locked or a mutex that is unlocked, an error will be returned.. MPI calls are prohibited within code
segments guarded by PERUSE_Lock and PERUSE_Unlock.

5.3 Semantics in multithreaded mode
The definition of PERUSE suggests close interaction between the code that implements

PERUSE and the main MPI library code. Therefore, it is expected that PERUSE will operate in
the same multithreaded mode as the entire MPI library. The consequence of this definition is that
if the MPI library is not thread safe, the code that implements PERUSE does not need to be
either. Further, if the MPI library works in a thread-safe mode, providing thread-safe PERUSE

30

functionality will not require separate thread safety mechanisms inside the PERUSE
implementation. The user code in the event callbacks will need to take the necessary precautions
to protect user-level shared structures that can be accessed from callbacks within different
threads when the MPI implementation uses internal system (service) threads. PERUSE defers the
thread environment initialization and management to the MPI library. The code that uses
PERUSE will inquire about the thread safety of the interface through the mechanisms provided
by the MPI library, specifically the MPI_query_thread call.

PERUSE provides the necessary mechanisms for multi-threaded MPI implementations
through the PERUSE_Lock and PERUSE_Unlock functions. These calls provide a simple
mechanism for guarding PERUSE internal code in a threaded MPI environment by mutexs. Note
that only lock free implementations of MPI_Wtime() and MPI_Wtick() are permitted within code segments
guarded by PERUSE_Lock and PERUSE_Unlock.

For signals-based multi-threaded MPI implementations, the use of MPI_Lock() and
MPI_Unlock() alone is insufficient as a safety mechanism; the PERUSE user (parallel tool
developer) will need to augment MPI_Lock() and MPI_Unlock() usage with any of the other
standard safety techniques employed in signals-based multi-threaded contexts.

PERUSE does not maintain any special context for user threads. Similarly to MPI, the
entire PERUSE functionality is defined on a per-process basis. This means that if a thread
initializes an event handle, the PERUSE library will not distinguish whether the same or a
different thread will subsequently manipulate the event handle. For example, one thread can
initialize an event handle, a second thread can open the activation window of the handle, and a
third thread can close the window and free the event. The user code is responsible for mitigating
the access to the same event handle when there are both read and modify operations performed
from different threads.
5.4 PERUSE and layered libraries

The experience of using PMPI has shown that in certain cases multiple layered MPI
libraries can coexist and in such a scenario it is difficult to measure the performance of a specific
layer without also including the effect of layers below. PERUSE has provisions that address this
problem. First, there is no restriction on the number of calls to PERUSE_Init or their order. The
only requirement is that PERUSE_Init is called after MPI_Init. This means that all layers can
safely call PERUSE_Init without conflicts. PERUSE will be initialized by the first call and all
others will be ignored. PERUSE does not need to be finalized, so this also enhances PERUSE
behavior in multi-layered environment.

Another PERUSE feature for support of layered libraries is the capability to indicate that
if a PERUSE event handle is attached to a communicator (MPI_Comm) and this communicator
is duplicated, the event and its window status will be propagated to the copy of the original
communicator. The function that indicates that the event handle will have this behavior is
PERUSE_Event_propagate. This function has an input parameter, which indicates the desired
mode of handle propagation when the MPI object associated with the handle is duplicated. The
values of the parameter can be PERUSE_TRUE or PERUSE_FALSE.

It is expected that in layered libraries more than one user callback will need to be
registered with a certain event at a time. Since PERUSE allows for multiple callbacks to be
registered for a given {event, MPI object} pair, this enables different library layers to register
their own callbacks without interfering with callbacks of other layers. The MPI library will
invoke all registered callbacks in some undetermined order.

31

5.5 Querying PERUSE support options and MPI’s run-time environment
PERUSE provides a set of PERUSE_Query_xxx functions that query different options

related to PERUSE support capabilities and the MPI run-time environment.
PERUSE_Query_supported_events is used to query the MPI library about all supported
PERUSE events. PERUSE_Query_event and PERUSE_Query_event_name are used for
retrieving event identifiers and event string names

PERUSE_Query_environment is intended to provide information about the MPI library
run-time environment (environment variables) that affects the behavior of the MPI library.
PERUSE_Query_queue_event_scope is intended to inform the user about the meaning of the
queue-related event – whether they are on per communicator basis or are global for all
communicators. This query is necessary to address MPI libraries that maintain only one global
pair of queues for posted and unexpected requests.
5.6 Relationship between MPI handles and PERUSE event handles

PERUSE event handle constructors PERUSE_Event_xxx_register associate PERUSE
events with MPI object handles by registering user PERUSE callbacks to the particular MPI
object. Operations on PERUSE event handles are allowed only when the MPI handle associated
with this event handle is valid, i.e., it is not released with MPI_Xxx_free. It is erroneous to use a
PERUSE event handle after the associated MPI handle with this PERUSE event handle is
released. The PERUSE calls should return PERUSE_ERR_MPI_OBJECT in such cases. It can be
inferred from this definition of the MPI and PERUSE handle relationship that these associations
are not treated as increments of the internal reference counts of the MPI objects.

During event callback registration, the constructor functions can return an error code of
the type PERUSE_ERR_COMM. These error codes indicate that the MPI library would have
returned an error class MPI_ERR_XXX if the user code had tried to use the corresponding MPI
handle in an MPI call. Hence, it can be assumed that the error codes PERUSE_ERR_XXX are
mapped to the corresponding MPI_ERR_XXX error classes.

6. External Interfaces

6.1 Target operating systems and platforms
The specification is intended to be independent of operating systems and hardware

platforms.
6.2 Language bindings

At this stage, PERUSE provides only C bindings of its API. The C bindings of the API
are shown in the example peruse.h file in Appendix A.
6.3 Library versions

The provider of PERUSE enabled MPI libraries could provide a debug and a production
library. The debug library will implement the PERUSE interface while the production library
will only provide dummy routines to satisfy unresolved externals. The goal is to avoid any
impact on codes that are run in production mode and are not subjected to performance
evaluation.

7. References

[1] Marc Snir, Steve W. Otto, Steven Huss-Lederman, David W. Walker, and Jack Dongarra.
MPI–The Complete Reference: Volume 1, The MPI Core, 2nd edition. MIT Press,
Cambridge, MA, 1998.

32

[2] William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill Nitzberg,
William Saphir, and Marc Snir. MPI-The Complete Reference: Volume 2, THE MPI-2
Extensions. MIT Press, Cambridge, MA, 1998

[3] MPI Software Technology Inc. Performance Revealing Extensions Interface (PERUSE)
version 1.2

33

8. Appendix A: Example PERUSE Header File (peruse.h)

#ifndef _PERUSE_H_
#define _PERUSE_H_
#include <mpi.h>

/* PERUSE type declarations */
typedef long peruse_event_h; /* Opaque event handle */
typedef struct _peruse_comm_spec_t
{
 MPI_Comm comm;
 void *buf;
 int count;
 MPI_Datatype datatype;
 int peer;
 int tag;
 int operation;
} peruse_comm_spec_t;

typedef int (peruse_comm_callback_f)(peruse_event_h event_h,
 MPI_Aint unique_id, peruse_comm_spec_t *spec, void *param);

/* PERUSE constants */
enum
{
 PERUSE_SUCCESS, /* success */
 PERUSE_ERR_INIT, /* PERUSE initialization failure */
 PERUSE_ERR_GENERIC, /* generic unspecified error */
 PERUSE_ERR_MALLOC, /* memory-related error */
 PERUSE_ERR_EVENT, /* invalid event descriptor */
 PERUSE_ERR_EVENT_HANDLE, /* invalid event handle */
 PERUSE_ERR_PARAMETER, /* invalid input parameter */
 PERUSE_ERR_MPI_INIT, /* MPI has not been initializes */
 PERUSE_ERR_COMM, /* MPI_ERR_COMM class */
PERUSE_ERR_MPI_OBJECT /* error with associated MPI object */

PERUSE_ERR_LOCK, /* error associated with PERUSE_Lock() */
PERUSE_ERR_UNLOCK, /* error associated with PERUSE_Unlock()

*/
PERUSE_ERR_LOCK_NOT_GRANTABLE /* error: unable to grant PERUSE lock */

};

enum
{
 PERUSE_EVENT_INVALID,

 /* Point-to-point request events */
 PERUSE_COMM_REQ_ACTIVATE,
 PERUSE_COMM_REQ_MATCH_UNEX,
 PERUSE_COMM_REQ_INSERT_IN_POSTED_Q,
 PERUSE_COMM_REQ_REMOVE_FROM_POSTED_Q,
 PERUSE_COMM_REQ_XFER_BEGIN,
 PERUSE_COMM_REQ_XFER_END,

34

 PERUSE_COMM_REQ_COMPLETE,
 PERUSE_COMM_REQ_NOTIFY,
 PERUSE_COMM_MSG_ARRIVED,
 PERUSE_COMM_MSG_INSERT_IN_UNEX_Q,
 PERUSE_COMM_MSG_REMOVE_FROM_UNEX_Q,
 PERUSE_COMM_MSG_MATCH_POSTED_REQ,

 /* Queue events */
 PERUSE_COMM_SEARCH_POSTED_Q_BEGIN,
 PERUSE_COMM_SEARCH_POSTED_Q_END,
 PERUSE_COMM_SEARCH_UNEX_QUEUE_BEGIN,
 PERUSE_COMM_SEARCH_UNEX_Q_END,

 /* Collective events */
 /* IO events */
 /* One-sided events */
 PERUSE_FIRST_CUSTOM_EVENT
};

/* Scope of message queues */
enum
{
 PERUSE_PER_COMM,

 PERUSE_PER_TAG,
 PERUSE_PER_SOURCE,

 PERUSE_GLOBAL
};

enum
{
 PERUSE_SEND,
 PERUSE_RECV,
 PERUSE_PUT,
 PERUSE_GET,
 PERUSE_ACC,
 PERUSE_IO_READ,
 PERUSE_IO_WRITE
};

#define PERUSE_EVENT_HANDLE_NULL ((peruse_event_h)0)

/*
 * I. Environment
 */
/* PERUSE initialization */
int PERUSE_Init();

/* Query all implemented events */
int PERUSE_Query_supported_events(
 int *num_supported,
 char ***event_names,
 int **events);

/* Query supported events */
int PERUSE_Query_event(const char *event_name, int *event);

/* Query event name */

35

int PERUSE_Query_event_name(int event, char **event_name);

/* Get environment variables that affect MPI library behavior */
int PERUSE_Query_environment(int *env_size, char ***env);

/* Queryig the scope of queue metircs - global or per communicator */
int PERUSE_Query_queue_event_scope(int *scope);

/* Acquire PERUSE code mutex */
int PERUSE_Lock();

/* Release PERUSE code mutex */
int PERUSE_Unlock();

/*
 * II. Events objects initialization and manipulation
 */
/* Initialize event associated with an MPI communicator */
int PERUSE_Event_comm_register(
 int event,
 MPI_Comm comm,
 peruse_comm_callback_f *callback_fn,
 void *param,
 peruse_event_h *event_h);

/* Start collecting data (activate event) */
int PERUSE_Event_activate(peruse_event_h event_h);

/* Stop collecting data (deactivate event) */
int PERUSE_Event_deactivate(peruse_event_h event_h);

/* Free event handle */
int PERUSE_Event_release(peruse_event_h *event_h);

/* Set a new comm callback */
int PERUSE_Event_comm_callback_set(
 peruse_event_h event_h,
 peruse_comm_callback_f *callback_fn,
 void *param);

/* Get the current comm callback */
int PERUSE_Event_comm_callback_get(
 peruse_event_h event_h,
 peruse_comm_callback_f **callback_fn,
 void **param);

/* Obtain event descriptor from a event handle (reverse lookup) */
int PERUSE_Event_get(peruse_event_h event_h, int *event);

/* Obtain MPI object associated with event handle */
int PERUSE_Event_object_get(peruse_event_h event_h, void **mpi_object);

36

/* Propagation mode */
int PERUSE_Event_propagate(peruse_event_h event_h, int mode);

#endif

37

9. Appendix B: PERUSE Examples

9.1 Examples of instrumented user MPI programs

9.1.1 Using environment, event, and queue event scope queries
#include <stdio.h>
#include <stdlib.h>
#include "mpi.h"
#include "peruse.h"

char *ename[] =
{
 "PERUSE_COMM_REQ_ACTIVATE",
 "PERUSE_COMM_REQ_MATCH_UNEX",
 "PERUSE_COMM_REQ_INSERT_IN_POSTED_Q",
 "PERUSE_COMM_REQ_REMOVE_FROM_POSTED_Q",
 "PERUSE_COMM_REQ_XFER_BEGIN",
 "PERUSE_COMM_REQ_XFER_END",
 "PERUSE_COMM_REQ_COMPLETE",
 "PERUSE_COMM_REQ_NOTIFY",
 "PERUSE_COMM_MSG_ARRIVED",
 "PERUSE_COMM_MSG_INSERT_IN_UNEX_Q",
 "PERUSE_COMM_MSG_REMOVE_FROM_UNEX_Q",
 "PERUSE_COMM_MSG_MATCH_POSTED_REQ",
 NULL
};

int main(int argc, char **argv)
{
 int eid, *eids;
 char **env, **names;
 int rv, size, i, scope = -1, n_sup;

 MPI_Init(&argc, &argv);
 PERUSE_Init();
 PERUSE_Query_environment(&size, &env);
 printf("Number of env. variables: %d\n", size);
 for(i = 0; i < size; i++)
 printf("%s\n", env[i]);

 PERUSE_Query_supported_events(&n_sup, &names, &eids);
 printf("Number of supported events: %d\n", n_sup);
 for(i = 0; i < n_sup; i++)
 printf("%s=%d\n", names[i], eids[i]);

 PERUSE_Query_queue_event_scope(&scope);
 printf("SCOPE=%s\n", (scope == PERUSE_PER_COMM) ?
 "PER_COMM" : "GLOBAL");

 for(i = 0; ename[i] != NULL; i++)
 {
 rv = PERUSE_Query_event(ename[i], &eid);
 printf("event=%s, event ID=%d is %s\n",
 ename[i], eid,
 (rv == PERUSE_SUCCESS) ? "supported":"unsupported");

 }

 MPI_Finalize();

 return 0;
}

38

9.1.2 Using callbacks
#include <stdio.h>
#include <stdlib.h>
#include "mpi.h"
#include "peruse.h"

#define NUM_MSG 100
#define MSG_SIZE 160

typedef struct
{
 int num_stamps;
 double time;
 double max;
} measure_t;

typedef struct _hash_elem_t
{
 MPI_Aint key;
 double stamp;
 struct _hash_elem_t *next;
} hash_elem_t;

hash_elem_t *HashGetElem(MPI_Aint key)
{
 hash_elem_t *h_elem;
 /* Use some hash function to find an existing element with key
 * in the hash table or allocate a new element */
 return h_elem;
}

int callback_unex(peruse_event_h event_h, MPI_Aint unique_id,
 peruse_comm_spec_t *cs, void *param)
{
 measure_t *mt = (measure_t *)param;
 char *event_name;
 int event;
 double t;
 hash_elem_t *helem;

 PERUSE_Event_get(event_h, &event);
 PERUSE_Query_event_name(event, &event_name);
 printf("Callback called for event %s\n", event_name);

 helem = HashGetElem(unique_id);
 switch(event)
 {
 case PERUSE_COMM_MSG_INSERT_IN_UNEX_Q:
 helem->stamp = MPI_Wtime();
 break;

 case PERUSE_COMM_MSG_REMOVE_FROM_UNEX_Q:
 t = MPI_Wtime() - helem->stamp;
 mt->time += t;
 if(t > mt->max)
 mt->max = t;
 mt->num_stamps++;
 break;

 default:
 printf("Unexpected event in callback\n");

39

 return MPI_ERR_INTERN;
 }
 return MPI_SUCCESS;
}

int msg[MSG_SIZE];

int main(int argc, char **argv)
{
 peruse_event_h e_unex_insert, e_unex_remove;
 int rv, size, i, rank, stat;
 MPI_Comm wrld = MPI_COMM_WORLD;
 MPI_Status status;
 MPI_Request r[NUM_MSG];
 measure_t unex = {0, 0.0, 0.0};

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 rv = PERUSE_Init();
 if(rv != PERUSE_SUCCESS)
 {
 printf("Error in PERUSE_Init: rv=%d\n", rv);
 fflush(stdout);
 exit(1);
 }

 /* HashTableSetup(); */
 if(rank == 0)
 {
 /* Interested only in rank 0 */
 PERUSE_Event_comm_register(PERUSE_COMM_MSG_INSERT_IN_UNEX_Q,
 wrld, callback_unex, &unex, &e_unex_insert);
 PERUSE_Event_comm_register(PERUSE_COMM_MSG_REMOVE_FROM_UNEX_Q,
 wrld, callback_unex, &unex, &e_unex_remove);
 PERUSE_Event_activate(e_unex_insert);
 PERUSE_Event_activate(e_unex_remove);

 for(i = 0; i < NUM_MSG; i++)
 MPI_Irecv(msg, MSG_SIZE, MPI_INT, 1, 0, wrld, &r[i]);

 MPI_Send(NULL, 0, MPI_INT, 1, 0, wrld);

 for(i = 0; i < NUM_MSG; i++)
 MPI_Wait(&r[i], &status);

 PERUSE_Event_deactivate(e_unex_insert);
 PERUSE_Event_deactivate(e_unex_remove);

 printf("Number of measurements: %d\n", unex.num_stamps);
 printf("Average time in unexpected queue: %f sec\n",
 unex.time / unex.num_stamps);
 printf("maximum time in unexpected queue: %f sec\n",
 unex.max);
 PERUSE_Event_release(&e_unex_insert);
 PERUSE_Event_release(&e_unex_remove);
 }
 else if (rank == 1)
 {
 for(i = 0; i < NUM_MSG; i++)
 {
 MPI_Send(msg, MSG_SIZE, MPI_INT, 0, 0, wrld);
 if(i == NUM_MSG / 2)

40

 MPI_Recv(NULL, 0, MPI_INT, 0, 0, wrld, &status);
 }
 }

 MPI_Finalize();
 /* HashTableCleanup(); */

 return 0;
}

9.1.3 Using queue events
#include <stdio.h>
#include <stdlib.h>
#include "mpi.h"
#include "peruse.h"

#define NUM_MSG 100
#define MSG_SIZE 160
#define NUM_Q_EVENTS 4

int qevents[NUM_Q_EVENTS] =
{
 PERUSE_COMM_SEARCH_POSTED_Q_BEGIN,
 PERUSE_COMM_SEARCH_POSTED_Q_END,
 PERUSE_COMM_SEARCH_UNEX_QUEUE_BEGIN,
 PERUSE_COMM_SEARCH_UNEX_Q_END
};

double time_in_unex_q = 0.0, time_in_posted_q = 0.0;

int callback(peruse_event_h event_h, MPI_Aint unique_id,
 peruse_comm_spec_t *cs, void *param)
{
 int event;

 PERUSE_Event_get(event_h, &event);
 switch(event)
 {
 case PERUSE_COMM_SEARCH_POSTED_Q_BEGIN:
 /* Take a time stamp for unique_id */
 break;

 case PERUSE_COMM_SEARCH_POSTED_Q_END:
 /* Take a time stamp for unique_id, substract
 * previous time stamp, and add to time_in_posted_q */
 break;

 case PERUSE_COMM_SEARCH_UNEX_QUEUE_BEGIN:
 /* Take a time stamp for unique_id */
 break;

 case PERUSE_COMM_SEARCH_UNEX_Q_END:
 /* Take a time stamp for unique_id, substract
 * previous time stamp, and add to time_in_unex_q */
 break;

 default:
 printf("Unexpected event\n");
 return MPI_ERR_INTERN;
 }

 return MPI_SUCCESS;

41

}

int msg[MSG_SIZE];

int main(int argc, char **argv)
{
 peruse_event_h eh[NUM_Q_EVENTS];
 int rv, size, i, rank, stat;
 MPI_Comm wrld = MPI_COMM_WORLD;
 MPI_Status status;
 MPI_Request r[NUM_MSG];

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 rv = PERUSE_Init();
 if(rv != PERUSE_SUCCESS)
 {
 printf("Error in PERUSE_Init: rv=%d\n", rv);
 fflush(stdout);
 exit(1);
 }

 rv = PERUSE_SUCCESS;
 for(i = 0; i < NUM_Q_EVENTS; i++)
 rv |= PERUSE_Event_comm_register(qevents[i], wrld,
 callback, NULL, &eh[i]);

 if(rv != PERUSE_SUCCESS)
 {
 printf("Cannot register events\n");
 fflush(stdout);
 MPI_Finalize();
 exit(1);
 }

 MPI_Barrier(wrld);

 if(rank == 0)
 {
 for(i = 0; i < NUM_Q_EVENTS; i++)
 PERUSE_Event_activate(eh[i]);

 for(i = 0; i < NUM_MSG; i++)
 MPI_Irecv(msg, MSG_SIZE, MPI_INT, 1, 0, wrld, &r[i]);

 MPI_Send(NULL, 0, MPI_INT, 1, 0, wrld);

 for(i = 0; i < NUM_MSG; i++)
 MPI_Wait(&r[i], &status);

 for(i = 0; i < NUM_Q_EVENTS; i++)
 PERUSE_Event_deactivate(eh[i]);
 }
 else if (rank == 1)
 {
 for(i = 0; i < NUM_MSG; i++)
 {
 MPI_Send(msg, MSG_SIZE, MPI_INT, 0, 0, wrld);
 if(i == NUM_MSG / 4)
 MPI_Recv(NULL, 0, MPI_INT, 0, 0, wrld, &status);
 }
 }

42

 for(i = 0; i < NUM_Q_EVENTS; i++)
 PERUSE_Event_release(&eh[i]);

 MPI_Finalize();

 return 0;
}

9.1.4 Counting posted and unexpected receives
#include <stdio.h>
#include <stdlib.h>
#include "mpi.h"
#include "peruse.h"

#define QEVENTS (4)

/* Queue events */
char *qevents[QEVENTS] =
{
 "PERUSE_COMM_REQ_INSERT_IN_POSTED_Q",
 "PERUSE_COMM_REQ_REMOVE_FROM_POSTED_Q",
 "PERUSE_COMM_MSG_INSERT_IN_UNEX_Q",
 "PERUSE_COMM_MSG_REMOVE_FROM_UNEX_Q"
};

/* Declaration of a type for collecting statistics */
typedef struct _measure_t
{
 int unex_num;
 int unex_len;
 int unex_max_len;
 int unex_ave_len;
 int posted_num;
 int posted_len;
 int posted_max_len;
 int posted_ave_len;
} measure_t;

measure_t *darr;
int np, my_rank;

/* Callback for collecting statistics */
int qcallback(peruse_event_h eh, MPI_Aint unique_id,
 peruse_comm_spec_t *spec, void *param)
{
 double t;
 int event;
 measure_t *mt;

 PERUSE_Event_get(eh, &event);
 mt = &darr[spec->peer]; /* get the data element for the peer */

 switch(event)
 {
 case PERUSE_COMM_REQ_INSERT_IN_POSTED_Q:
 mt->posted_num++;
 mt->posted_len++;
 if(mt->posted_len > mt->posted_max_len)
 mt->posted_max_len = mt->posted_len;
 mt->posted_ave_len =
 ((mt->posted_num - 1) * mt->posted_ave_len +
 mt->posted_len) / mt->posted_num;
 break;

43

 case PERUSE_COMM_REQ_REMOVE_FROM_POSTED_Q:
 mt->posted_len--;
 break;

 case PERUSE_COMM_MSG_INSERT_IN_UNEX_Q:
 mt->unex_num++;
 mt->unex_len++;
 if(mt->unex_len > mt->unex_max_len)
 mt->unex_max_len = mt->unex_len;
 mt->unex_ave_len =
 ((mt->unex_num - 1) * mt->unex_ave_len +
 mt->unex_len) / mt->unex_num;
 break;

 case PERUSE_COMM_MSG_REMOVE_FROM_UNEX_Q:
 mt->unex_len--;
 break;

 default:
 printf("Unexpected event in callback\n");
 return MPI_ERR_INTERN;
 }

 return MPI_SUCCESS;
}

void UserMpiProcessing(){}

int main(int argc, char **argv)
{
 int i, rv, eid[QEVENTS];
 peruse_event_h eh[QEVENTS];

 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD, &np);
 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

 /* Initialize PERUSE */
 rv = PERUSE_Init();
 if(rv != PERUSE_SUCCESS)
 {
 printf("Unable to initialize PERUSE\n");
 return 1;
 }

 darr = (measure_t *)calloc(np, sizeof(measure_t));
 /* Initialize queue event handles and activate them */
 for(i = 0; i < QEVENTS; i++)
 {
 PERUSE_Query_event(qevents[i], &eid[i]);
 PERUSE_Event_comm_register(eid[i], MPI_COMM_WORLD, qcallback,
 NULL, &eh[i]);
 PERUSE_Event_activate(eh[i]);
 }

 /* User code subjected to PERUSE evaluation */
 UserMpiProcessing();

 /* Deactivate event handles and free them */
 for(i = 0; i < QEVENTS; i++)
 {
 PERUSE_Event_deactivate(eh[i]);
 PERUSE_Event_release(&eh[i]);
 }

44

 /* Report results */
 for(i = 0; i < np; i++)
 {
 printf("===== Peer rank: %d =====\n", i);
 printf("number of unexpected messages: %d\n",
 darr[i].unex_num);
 printf("max unexpected queue length: %d\n",
 darr[i].unex_max_len);
 printf("ave unexpected queue length: %d\n",
 darr[i].unex_ave_len);
 printf("number of posted receives : %d\n",
 darr[i].posted_num);
 printf("max posted queue length: %d\n",
 darr[i].posted_max_len);
 printf("ave posted queue length: %d\n",
 darr[i].posted_ave_len);
 }
 free(darr);

 return 0;
}

9.2 Example performance profiler code
#include <stdio.h>
#include <stdlib.h>
#include "mpi.h"
#include "peruse.h"

#define NUM_REQ_EVENTS (12)

/* Events for the occurrence of which the profiler will be notified */
char *comm_events[NUM_REQ_EVENTS] =
{
 "PERUSE_COMM_REQ_ACTIVATE",
 "PERUSE_COMM_REQ_MATCH_UNEX",
 "PERUSE_COMM_REQ_INSERT_IN_POSTED_Q",
 "PERUSE_COMM_REQ_REMOVE_FROM_POSTED_Q",
 "PERUSE_COMM_REQ_XFER_BEGIN",
 "PERUSE_COMM_REQ_XFER_END",
 "PERUSE_COMM_REQ_COMPLETE",
 "PERUSE_COMM_REQ_NOTIFY",
 "PERUSE_COMM_MSG_ARRIVED",
 "PERUSE_COMM_MSG_INSERT_IN_UNEX_Q",
 "PERUSE_COMM_MSG_REMOVE_FROM_UNEX_Q",
 "PERUSE_COMM_MSG_MATCH_POSTED_REQ"
};

/* Declaration of a type for collecting statistics */
/* The statistics are accumulated over all communicators */
typedef struct _req_estamp_t
{
 double req_activate;
 double req_match_unex;
 double req_posted_q_in;
 double req_posted_q_out;
 double req_xfer_begin;
 double req_xfer_end;
 double req_complete;
 double req_notify;
 double msg_arrived;
 double msg_unex_q_in;
 double msg_unex_q_out;
 double msg_match_posted;
} req_estamp_t;

45

typedef struct _pevent_t
{
 int eid;
 peruse_event_h *eh_arr;
} pevent_t;

typedef struct _measure_t
{
 char *name;
 int num;
 double ave;
 double max;
 double len;
} measure_t;

/* Define metrics of interest based on the pre-defined events */
enum
{
 T_REQ_ACTIVATE_TO_MATCH = 0,
 T_REQ_ACTIVATE_TO_XFER_BEGIN,
 T_XFER_BEGIN_TO_END,
 T_COMPLETE_TO_NOTIFY,
 T_ACTIVATE_TO_NOTIFY,
 T_IN_UNEX_Q,
 N_POSTED_Q_LEN,
 N_UNEX_Q_LEN,
 NUM_METRICS
};

char *metric_names[] = {
 "T_REQ_ACTIVATE_TO_MATCH", "T_REQ_ACTIVATE_TO_XFER_BEGIN",
 "T_XFER_BEGIN_TO_END", "T_COMPLETE_TO_NOTIFY", "T_ACTIVATE_TO_NOTIFY",
 "T_IN_UNEX_Q", "N_POSTED_Q_LEN","N_UNEX_Q_LEN", NULL};

/* Hash Table for request unique_id */
#define HASH_TABLE_SIZE 256
#define HASH_FUNC(_key_) ((_key_) % HASH_TABLE_SIZE)

typedef struct _hash_elem_t
{
 MPI_Aint key;
 req_estamp_t stamp;
 struct _hash_elem_t *next;
} hash_elem_t;

int HashTableSetup();
void HashTableCleanup();
req_estamp_t *HashTableFindOrInsert(MPI_Aint key);
void HashTableRemove(MPI_Aint key);

int InitiEvents(MPI_Comm comm, peruse_comm_callback_f *callback);
int CleanupEvents(int comm_idx);
void ComputeTimeMetric(measure_t *mt, double time);
void ComputeCounterMetric(measure_t *mt);
void print_stat(measure_t *mt);

int np, my_rank, num_comms = 0;
MPI_Comm *comm_arr = NULL;
pevent_t events[NUM_REQ_EVENTS];
measure_t metrics[NUM_METRICS];
hash_elem_t **HashTable;

/* Callback for collecting statistics */

46

int comm_callback(peruse_event_h event_h, MPI_Aint unique_id,
 peruse_comm_spec_t *spec, void *param)
{
 measure_t *mt;
 req_estamp_t *estamp;
 int event;
 double t;

 /* Assume that we are only interested in point to point
 * communication to/from remote ranks */
 if(spec->peer == my_rank)
 return MPI_SUCCESS;

 PERUSE_Event_get(event_h, &event);
 estamp = HashTableFindOrInsert(unique_id);
 switch(event)
 {
 case PERUSE_COMM_REQ_ACTIVATE:
 estamp->req_activate = PMPI_Wtime();
 break;

 case PERUSE_COMM_REQ_MATCH_UNEX:
 estamp->req_match_unex = PMPI_Wtime();
 mt = &metrics[T_REQ_ACTIVATE_TO_MATCH];
 t = estamp->req_match_unex - estamp->req_activate;
 ComputeTimeMetric(mt, t);
 break;

 case PERUSE_COMM_REQ_INSERT_IN_POSTED_Q:
 estamp->req_posted_q_in = PMPI_Wtime();
 mt = &metrics[N_POSTED_Q_LEN];
 ComputeCounterMetric(mt);
 break;

 case PERUSE_COMM_REQ_REMOVE_FROM_POSTED_Q:
 estamp->req_posted_q_out = PMPI_Wtime();
 mt = &metrics[N_POSTED_Q_LEN];
 mt->len--;
 break;

 case PERUSE_COMM_REQ_XFER_BEGIN:
 estamp->req_xfer_begin = PMPI_Wtime();
 mt = &metrics[T_REQ_ACTIVATE_TO_XFER_BEGIN];
 t = estamp->req_xfer_begin - estamp->req_activate;
 ComputeTimeMetric(mt, t);
 break;

 case PERUSE_COMM_REQ_XFER_END:
 estamp->req_xfer_end = PMPI_Wtime();
 mt = &metrics[T_XFER_BEGIN_TO_END];
 t = estamp->req_xfer_end - estamp->req_xfer_begin;
 ComputeTimeMetric(mt, t);
 break;

 case PERUSE_COMM_REQ_COMPLETE:
 estamp->req_complete = PMPI_Wtime();
 break;

 case PERUSE_COMM_REQ_NOTIFY:
 estamp->req_notify = PMPI_Wtime();
 mt = &metrics[T_COMPLETE_TO_NOTIFY];
 t = estamp->req_notify - estamp->req_complete;
 ComputeTimeMetric(mt, t);
 mt = &metrics[T_ACTIVATE_TO_NOTIFY];
 t = estamp->req_notify - estamp->req_activate;

47

 ComputeTimeMetric(mt, t);
 break;

 case PERUSE_COMM_MSG_ARRIVED:
 estamp->msg_arrived = PMPI_Wtime();
 break;

 case PERUSE_COMM_MSG_INSERT_IN_UNEX_Q:
 estamp->msg_unex_q_in = PMPI_Wtime();
 mt = &metrics[N_UNEX_Q_LEN];
 ComputeCounterMetric(mt);
 break;

 case PERUSE_COMM_MSG_REMOVE_FROM_UNEX_Q:
 estamp->msg_unex_q_out = PMPI_Wtime();
 mt = &metrics[T_IN_UNEX_Q];
 t = estamp->msg_unex_q_out - estamp->msg_unex_q_in;
 ComputeTimeMetric(mt, t);
 mt = &metrics[N_UNEX_Q_LEN];
 mt->len--;
 break;

 case PERUSE_COMM_MSG_MATCH_POSTED_REQ:
 estamp->msg_match_posted = PMPI_Wtime();
 break;

 default:
 printf("Unexpected event in callback\n");
 return MPI_ERR_INTERN;
 }

 /* If the event is last for teh request, release the hash element */
 if(event == PERUSE_COMM_REQ_NOTIFY ||
 event == PERUSE_COMM_MSG_REMOVE_FROM_UNEX_Q ||
 event == PERUSE_COMM_MSG_MATCH_POSTED_REQ)
 {
 HashTableRemove(unique_id);
 }

 return MPI_SUCCESS;
}

/* Profiler functions */
int MPI_Init(int *argc, char ***argv)
{
 int i, rv, eid;
 peruse_event_h eh;

 PMPI_Init(argc, argv);
 PMPI_Comm_size(MPI_COMM_WORLD, &np);
 PMPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

 /* Initialize PERUSE */
 rv = PERUSE_Init();
 if(rv != PERUSE_SUCCESS)
 {
 printf("Unable to initialize PERUSE\n");
 return MPI_ERR_INTERN;
 }

 HashTableSetup();
 memset(metrics, 0, NUM_METRICS * sizeof(measure_t));
 for(i = 0; i < NUM_METRICS; i++)
 metrics[i].name = metric_names[i];

48

 /* Query PERUSE to see if the events of interest are supported */
 for(i = 0; i < NUM_REQ_EVENTS; i++)
 PERUSE_Query_event(comm_events[i], &events[i].eid);

 return InitEvents(MPI_COMM_WORLD, comm_callback);
}

int MPI_Comm_create(MPI_Comm comm, MPI_Group group, MPI_Comm *newcomm)
{
 int rv;

 rv = PMPI_Comm_create(comm, group, newcomm);
 if(rv != MPI_SUCCESS)
 return rv;

 return InitEvents(*newcomm, comm_callback);
}

int MPI_Comm_dup(MPI_Comm comm, MPI_Comm *newcomm)
{
 int rv;

 rv = PMPI_Comm_dup(comm, newcomm);
 if(rv != MPI_SUCCESS)
 return rv;

 return InitEvents(*newcomm, comm_callback);
}

int MPI_Comm_split(MPI_Comm comm, int color, int key, MPI_Comm *newcomm)
{
 int rv;

 rv = PMPI_Comm_split(comm, color, key, newcomm);
 if(rv != MPI_SUCCESS)
 return rv;

 return InitEvents(*newcomm, comm_callback);
}

int MPI_Comm_free(MPI_Comm *comm)
{
 int i, comm_idx, rv;
 MPI_Comm cm = *comm;

 rv = PMPI_Comm_free(comm);
 if(rv != MPI_SUCCESS)
 return rv;

 for(i = 0; i < num_comms; i++)
 if(cm == comm_arr[i])
 comm_idx = i;
 return CleanupEvents(comm_idx);
}

int MPI_Finalize()
{
 int i;

 /* Deactivate event handles and free them for all comms */
 for(i = 0; i < num_comms; i++)
 CleanupEvents(i);

 for(i = 0; i < NUM_REQ_EVENTS; i++)
 {

49

 if(events[i].eid == PERUSE_EVENT_INVALID)
 {
 printf("Event %s not supported\n", comm_events[i]);
 continue;
 }
 free(events[i].eh_arr);
 }

 /* Print stiatistics for all metrics */
 for(i = 0; i < NUM_METRICS; i++)
 print_stat(&metrics[i]);

 HashTableCleanup();
 free(events);
 free(comm_arr);

 return PMPI_Finalize();
}

/* Support functions */
int InitEvents(MPI_Comm comm, peruse_comm_callback_f *callback)
{
 int i;
 peruse_event_h eh;

 /* Initialize event handles with comm and activate them */
 num_comms++;
 comm_arr = (MPI_Comm *)realloc(comm_arr, num_comms * sizeof(MPI_Comm));
 comm_arr[num_comms - 1] = comm;
 for(i = 0; i < NUM_REQ_EVENTS; i++)
 {
 PERUSE_Event_comm_register(events[i].eid, comm,
 callback, NULL, &eh);
 events[i].eh_arr = (peruse_event_h *)realloc(events[i].eh_arr,
 num_comms * sizeof(peruse_event_h));
 events[i].eh_arr[num_comms - 1] = eh;
 PERUSE_Event_activate(eh);
 }

 return MPI_SUCCESS;
}

int CleanupEvents(int comm_idx)
{
 int i;

 for(i = 0; i < NUM_REQ_EVENTS; i++)
 {
 PERUSE_Event_deactivate(events[i].eh_arr[comm_idx]);
 PERUSE_Event_release(&events[i].eh_arr[comm_idx]);
 }
}

void ComputeTimeMetric(measure_t *mt, double time)
{
 if(time > mt->max)
 mt->max = time;
 mt->ave = (mt->num * mt->ave + time) / (mt->num + 1);
 mt->num++;
}

void ComputeCounterMetric(measure_t *mt)
{
 mt->len++;
 if(mt->len > mt->max)

50

 mt->max = mt->len;
 mt->ave = (mt->num * mt->ave) / (mt->num + 1);
 mt->num++;
}

void print_stat(measure_t *mt)
{
 printf("metric: %s\n", mt->name);
 printf(" number of measurements: %d\n", mt->num);
 printf(" average : %f\n", mt->ave);
 printf(" maximum : %f\n", mt->max);
}

/* Hash Table interface */
int HashTableSetup()
{
 HashTable = (hash_elem_t **)calloc(
 HASH_TABLE_SIZE, sizeof(hash_elem_t *));
 return (HashTable) ? 1 : 0;
}

void HashTableCleanup()
{
 int i;
 hash_elem_t *he, *oe;

 for(i = 0; i < HASH_TABLE_SIZE; i++)
 {
 for(he = HashTable[i]; he != NULL;)
 {
 oe = he;
 he = he->next;
 free(oe);
 }
 }
 free(HashTable);
}

req_estamp_t *HashTableFindOrInsert(MPI_Aint key)
{
 hash_elem_t *he, *pe = NULL;
 int idx = HASH_FUNC(key);

 for(he = HashTable[idx]; he != NULL && he->key != key;)
 {
 pe = he;
 he = he->next;
 }
 if(he != NULL && he->key == key)
 return &he->stamp;

 /* Did not find the entry; make a new one */
 he = (hash_elem_t *)calloc(1, sizeof(hash_elem_t));
 he->key = key;
 if(pe == NULL)
 HashTable[idx] = he;
 else
 pe->next = he;

 return &he->stamp;
}

void HashTableRemove(MPI_Aint key)
{
 hash_elem_t *he, *pe = NULL;

51

 int idx = HASH_FUNC(key);

 for(he = HashTable[idx]; he != NULL && he->key != key;)
 {
 pe = he;
 he = he->next;
 }
 if(he == NULL) /* Not found */
 return;
 if(pe == NULL)
 HashTable[idx] = NULL;
 else
 pe->next = NULL;

 free(he);
}

52

10. Appendix C: PERUSE API FUNCTIONS

PERUSE_Init
PERUSE_Query_supported_events
PERUSE_Query_event
PERUSE_Query_event_name
PERUSE_Query_environment
PERUSE_Query_queue_event_scope
PERUSE_Event_comm_register
PERUSE_Event_activate
PERUSE_Event_deactivate
PERUSE_Event_release
PERUSE_Event_comm_callback_set
PERUSE_Event_comm_callback_get
PERUSE_Event_get
PERUSE_Event_object_get
PERUSE_Eventpropagate
PERUSE_Lock
PERUSE_Unlock

53

11. Appendix D: PERUSE CONSTANTS

PERUSE_SUCCESS /* Error code: success */
PERUSE_ERR_INIT /* Error code: PERUSE initialization failure */
PERUSE_ERR_GENERIC /* Error code: generic unspecified error */
PERUSE_ERR_MALLOC /* Error code: memory-related error */
PERUSE_ERR_EVENT /* Error code: invalid event descriptor */
PERUSE_ERR_EVENT_HANDLE /* Error code: invalid event handle */
PERUSE_ERR_PARAMETER /* Error code: invalid input parameter */
PERUSE_ERR_MPI_INIT /* Error code: MPI has not been initializes */
PERUSE_ERR_COMM /* Error code: MPI_ERR_COMM class */
PERUSE_ERR_MPI_OBJECT /* Error code: error with associated MPI object */
PERUSE_ERR_LOCK /* Error code: error associated with PERUSE_Lock */
PERUSE_ERR_UNLOCK /* Error code: error associated with PERUSE_Unlock */
PERUSE_ERR_LOCK_NOT_GRANTABLE /* Error code: unable to grant PERUSE lock */

PERUSE_COMM_REQ_ACTIVATE
PERUSE_COMM_REQ_MATCH_UNEX
PERUSE_COMM_REQ_INSERT_IN_POSTED_Q
PERUSE_COMM_REQ_REMOVE_FROM_POSTED_Q
PERUSE_COMM_REQ_XFER_BEGIN
PERUSE_COMM_REQ_XFER_END
PERUSE_COMM_REQ_COMPLETE
PERUSE_COMM_REQ_NOTIFY
PERUSE_COMM_MSG_ARRIVED
PERUSE_COMM_MSG_INSERT_IN_UNEX_Q
PERUSE_COMM_MSG_REMOVE_FROM_UNEX_Q
PERUSE_COMM_MSG_MATCH_POSTED_REQ
PERUSE_COMM_SEARCH_POSTED_Q_BEGIN
PERUSE_COMM_SEARCH_POSTED_Q_END
PERUSE_COMM_SEARCH_UNEX_QUEUE_BEGIN
PERUSE_COMM_SEARCH_UNEX_Q_END
PERUSE_FIRST_CUSTOM_EVENT

PERUSE_PER_COMM
PERUSE_PER_TAG
PERUSE_PER_SOURCE
PERUSE_GLOBAL

PERUSE_SEND
PERUSE_RECV
PERUSE_PUT
PERUSE_GET
PERUSE_ACC
PERUSE_IO_READ
PERUSE_IO_WRITE

PERUSE_EVENT_HANDLE_NULL

54

12. Appendix E: PROPOSED ADDITIONS TO PERUSE RETAINED FOR
FUTURE VERSIONS

12.1 Collective communication metrics (MPI_Comm)
PERUSE attempts to provide additional detail in MPI collective operations. Some of the

PERUSE metrics refer to individual send and receive operations. These operations are the
primitive point-to-point or collective operations (if available) supported by the underlying low-
level communication infrastructure. Such operations are TCP sockets send() and recv(), SMP
memory copy in and out, LAPI_Put and LAPI_Get, VipPostSend and VipPostRecv, etc. If a
collective algorithm can be implemented with only one underlying primitive operation, such as a
shared memory barrier, than the count of primitive operations for the corresponding MPI
operation MPI_Barrier() will be one. By basing the definition on the number of primitive
operations used to implement an MPI collective operations, PERUSE strives to be more generic.
For example, an alternative definition based on the count of MPI point-to-point operations might
not be appropriate for some MPI implementations as they may provide collective operations that
are not layered on top of the MPI point-to-point calls. PERUSE does not associate any
interpretation of the performance capabilities of the MPI collective operations based on the
number of primitive communication operations. A very efficient algorithm may use a larger
number of primitive operations ordered or pipelined in a manner that results in a better overall
performance. PERUSE collective metrics only provide information about the number of the
primitive transfers – the interpretation is left to the MPI library or performance tool developers.

If the implementation of the collective operations in the MPI library is based on point-to-
point MPI operations and PERUSE requests or queue metrics are activated, the MPI library will
collect performance data for these metrics for the collective operations as well. The definition of
the request and queue metrics does not distinguish on the bases of who the initiator of the
operations is – whether the user is calling directly point-to-point operations, or the library
implements collective communication or is performing other control MPI-level communication.
An alternative definition is possible, according to which of the point-to-point metrics are not
affected by collective operations. This alternative is not covered in this version of the
specification.

PERUSE_COMM_N_SENDS Number of individual primitive send operations associated with
a collective operation. The measurement (counter update) is
made before every primitive send operation executed in the
collective operation.
Rationale: Collective algorithms can be implemented by MPI
libraries in many different ways. This metric gives an indication
of the level of participation of the particular process in
collective operations by counting the number of send primitive
operations. On some platforms, this metric can be used for
finding a more appropriate allocation of processes to processors
so that the number of primitive send operations is minimized.

PERUSE_COMM_N_RECVS Number of individual primitive receive operations associated
with a collective operation. The measurement (counter update)
is made before every primitive receive operation executed in the
collective operation.
Rationale: Collective algorithms can be implemented by MPI
libraries in many different ways. This metric gives an indication
of the level of participation of the particular process in
collective operations by counting the number of receive
primitive operations. On some platforms, this metric can be
used for finding a more appropriate allocation of processes to
processors so that the number of primitive receive operations is
minimized.

55

used for finding a more appropriate allocation of processes to
processors so that the number of primitive receive operations is
minimized.

PERUSE_COMM_T_BTWN_OPS Time between primitive send or receive operations associated
with a collective operation, if more than one primitive operation
is executed by the process. This metric gives an indication about
the progress of individual transfers associated with collective
operations. The time stamps are taken at the same locations as
the PERUSE_COMM_N_SENDS and
PERUSE_COMM_N_RECVS metrics.
Rationale: This statistics can be used to infer information about
the progress of send and receive messages, possibly
intermediate ones. This information can help detect issues with
the implementation of collective operations or with scheduling
of the individual primitive transfers.

12.2 Parallel IO metrics (MPI_File)
PERUSE provides a set of parallel file I/O metrics. In regards to these metrics, the term

disk access or I/O operation refers to the operating system read and write operations, as
observed by the MPI library. If a user level file system with OS-bypass is used instead, the I/O
operations will be those calls made to the OS-bypass library that initiated file read and write
operations. This definition is consistent with the definition of the message transfer initiation
specified above. A readv operation is considered one primitive operation similar to the primitive
collective operations counted in the MPI collective operations metrics. One possible alternative
definition would reflect the actual physical writes and reads to/from the storage medium.
However, this information is generally available only through the operating system and the disk
drivers. Since the MPI library is most frequently implemented as a user-level library, this second
definition is impractical.

The I/O cached bytes are those bytes that the MPI library caches internally, possibly for
performance purposes, and not the bytes that the operating system buffers. Shipped bytes
represent data that the MPI implementation transfers to other processes that might perform the
actual disk I/O operations. Shipped bytes are introduced because PERUSE metrics have local
semantics and some MPI I/O optimizations might result in a situation where a process that has
received an MPI_File_write/read() request may actually perform only communication operations
to other processes (on the same or on different machines). Finally, immediate bytes are the bytes
that the MPI library directly writes/reads using the operating system I/O calls or the user-level
library I/O calls.

PERUSE_FILE_N_DISK_ACCESSES_PER_IOREQ Number of disk accesses associated with an IO request. The
non-contiguous I/O access pattern of the parallel application can
be specified with a single MPI-IO read/write call by setting
appropriate file views. Based on the algorithm used in the
implementation, the non-contiguous file access pattern could be
accomplished using a single or multiple disk accesses. This
metric finds the total number of disk accesses involved in the
processing of an I/O request. The measurement is made before
each primitive I/O operation related to accessing a file.
Rationale: This metric gives an indication about the actual
implementation of I/O in the MPI library and may help
designers of I/O applications create more efficient type maps for
reducing the number of disk accesses.

PERUSE_FILE_N_SHIPPED_BYTES Number of bytes sent/received over the network as opposed to
written/read into/from a file for an I/O request. In collective I/O,
MPI libraries can implement optimizations for reducing the total
number of disk accesses by re-organizing the user buffers. This
metric shows the number of bytes that are sent/received to/from
other processes along the lines of these optimizations. The
measurement is taken after the last “shipped” byte associated
with the I/O request is sent/received.

56

MPI libraries can implement optimizations for reducing the total
number of disk accesses by re-organizing the user buffers. This
metric shows the number of bytes that are sent/received to/from
other processes along the lines of these optimizations. The
measurement is taken after the last “shipped” byte associated
with the I/O request is sent/received.
Rationale: Using this information, users can observe the
behavior of the MPI library in selecting the optimal disk access
decisions. Designers can develop more efficient decisions for
distributing the data among processes.

PERUSE_FILE_N_ACCESS_BYTES Number of bytes actually written/read to/from disk for an I/O
request. In collective I/O, MPI libraries can implement
optimizations for reducing the total number of disk accesses by
re-organizing the user buffers. This metric shows the number of
bytes that are actually written/read to/from disk. The
measurement is taken after the last “accessed” byte associated
with the I/O request is written/read.
Rationale: Using this information, users can observe the
behavior of the MPI library in selecting the optimal disk access
decisions. Designers can develop more efficient decisions for
distributing the data among processes.

PERUSE_FILE_N_TEMP_FILES Number of temporary files. Depending on the nature of the I/O
request, certain number of temporary files are generated to store
the intermediate results. These temporary files may be deleted
after the successful completion of the I/O requests. This metric
reports the number of temporary files that are created during the
course of an MPI-I/O operation. The measurement is taken
before the creation of every temporary file.
Rationale: If a large number of temporary files are used by the
MPI I/O implementation, this may lead to unexpected delays
and negative impact on performance. This metric can provide
information for detecting such situations.

PERUSE_FILE_T_IOREQ_ACCESS Time spent on accessing the I/O system beginning with the
initiation of the I/O request to its completion. This metric
measures the total time for an I/O request spent on performing
one or more disk accesses. The completion of the I/O request
may also involve other operations, such as buffer agglomeration
and communication for global buffer reorganization. The first
time stamp is taken before the first disk access. The second time
stamp is taken after the last disk access is completed.
Rationale: This metric measures the actual time spent on disk
accesses. Using this information the user might be able to
estimate the efficiency of the I/O operation and get an
understanding about the overhead activities.

PERUSE_FILE_T_GET_SHARED_POINTER Time for obtaining shared file pointer. File access using shared
file pointers is an atomic file operation and only one process can
possess the shared file pointer at a single instance of time.
Hence, when other processes need to perform shared file access
operations, they need to wait until the process holding the
shared file pointer relinquishes the file pointer. The first time
stamp is taken before the attempt for obtaining the shared file
pointer. The second time stamp is taken after the shred file
pointer is obtained.
Rationale: Using this information designers of I/O programs
that use shared lock may be able to develop algorithms with
better scheduling of I/O activities so obtaining the shared lock
does not become a source of unnecessary synchronization
overhead.

PERUSE_FILE_T_FIRST_PHASE_IN_SPLIT_IO Time spent in the first phase of split I/O. Split I/O is an
asychronous version of the collective I/O operations. In split
I/O, the I/O operation is asynchronously commenced during the
MPI_XXX_Begin() call and completed using the
MPI_XXX_End() call. This metric measures the actual time
spent on all I/O related activities, including disk accesses and
internal communication in the first phase. The first time stamp
is taken before the first I/O or communication activity. The
second time stamp is taken after the last I/O or communication
activity.

57

MPI_XXX_End() call. This metric measures the actual time
spent on all I/O related activities, including disk accesses and
internal communication in the first phase. The first time stamp
is taken before the first I/O or communication activity. The
second time stamp is taken after the last I/O or communication
activity.
Rationale: The information provided by this metric can be used
for understanding when the actual I/O activities take place –
during the first phase, during the second phase, or
asynchronously between the two phases.

PERUSE_FILE_T_SECOND_PHASE_IN_SPLIT_IO Time spent in the second phase of split I/O. This metric
measures the actual time spent on I/O and communication
activities in the second phase of the split-collective I/O. The
first time stamp is taken before the first I/O or communication
activity. The second time stamp is taken after the last I/O or
communication activity.
Rationale: The information provided by this metric can be used
for understanding of when the actual I/O activities take place –
during the first phase, during the second phase, or
asynchronously between the two phases.

12.2.1 PERUSE_Event_file_register
Synopsis

int PERUSE_Event_file_register(int event, MPI_File file,
peruse_file_callback_t *callback_fn, void *param, peruse_event_h * event_h)

Input parameters
event – event descriptor
file – valid MPI file handle
callback_fn – user callback
param – user-specific data

Output parameters
event_h – inactive event handle

Return value
PERUSE_SUCCESS, PERUSE_ERR_EVENT, PERUSE_ERR_FILE,
PERUSE_ERR_PARAMETER

Description
Used to create an event handle event_h related to an MPI file object by associating the event
descriptor event and file handle file. The user callback callback_fn is registered with the output
event handle. This callback function will be called when the MPI library performs an action that
will affect the event described by event_h. If callback_fn is NULL, PERUSE_ERR_PARAMETER
will be returned. PERUSE_ERR_EVENT will be returned if the input event descriptor is invalid,
and PERUSE_ERR_FILE if the file handle is invalid. PERUSE_ERR_FILE indicates that the MPI
library would have returned MPI_ERR_FILE class if the user code tried to reference file in an MPI
call.

12.2.2 PERUSE_Event_file_callback_set
Synopsis

int PERUSE_Event_file_callback_set(peruse_event_h event_h,
peruse_file_callback_t *callback_fn, void *param)

Input parameters
event_h – event handle
callback_fn – user defined callback function
param – user specific parameter that will be passed to the callback function

Output parameters
n/a

Return value

58

PERUSE_SUCCESS, PERUSE_ERR_EVENT_HANDLE, PERUSE_ERR_PARAMETER,
PERUSE_ERR_MPI_OBJECT

Description
This function associates a user defined file callback_fn function with an inactive event handle
event_h. The event_h and param input parameters will be passed to callback_fn when it is
invoked. The old callback will be lost and only the callback registered with this call will be kept. If
PERUSE_EVENT_HANDLE_NULL is passed as an input parameter or event_h is active, the
function returns PERUSE_ERR_EVENT_HANDLE. If NULL is passed as callback_fn,
PERUSE_ERR_PARAMETER will be returned. PERUSE_ERR_MPI_OBJECT is returned if the
MPI object with which event_h is associated has been freed.

12.2.3 PERUSE_Event_file_callback_get
Synopsis

int PERUSE_Event_file_callback_get(peruse_event_h event_h,
peruse_file_callback_t **callback_fn, void **param)

Input parameters
event_h – event handle

Output parameters
callback_fn – user defined callback function
param – user specific parameter that was passed to the callback function

Return value
PERUSE_SUCCESS, PERUSE_ERR_EVENTHANDLE, PERUSE_ERR_MPI_OBJECT

Description
This function obtains the user defined callback function that is associated with the event handle
event_h. The value of the output parameter param is the one passed in by the user when the
callback was registered. If PERUSE_EVENT_HANDLE_NULL is passed as an input parameter or
event_h is active, the function returns PERUSE_ERR_EVENT_HANDLE.
PERUSE_ERR_MPI_OBJECT is returned if the MPI object with which event_h is associated has
been freed.

12.2.4 File Related Items to be incorporated in peruse.h
typedef struct _peruse_file_spec_t
{
 MPI_File file;
 void *buf;
 int count;
 MPI_Datatype datatype;
 MPI_Offset offset;
 int operation;
} peruse_file_spec_t;

typedef int (peruse_file_callback_f)(peruse_event_h event_h,
 MPI_Aint unique_id, peruse_file_spec_t *spec, void *param);

/* Initialize event associated with an MPI file */
int PERUSE_Event_file_register(
 int event,
 MPI_File file,
 peruse_file_callback_f *callback_fn,
 void *param,
 peruse_event_h *event_h);

/* Set a new file callback */
int PERUSE_Event_file_callback_set(

59

 peruse_event_h event_h,
 peruse_file_callback_f *callback_fn,
 void *param);

12.2.5 MPI File code example
#include <stdio.h>
#include <stdlib.h>
#include "mpi.h"
#include "peruse.h"

#define FMETRICS 9
#define DATA_SIZE (64 * 1024)
#define FNAME "peruse_file"

char *fmetrics[FMETRICS] =
{
 "PERUSE_FILE_N_DISK_ACCESSES_PER_IOREQ",
 "PERUSE_FILE_N_CACHED_BYTES",
 "PERUSE_FILE_N_SHIPPED_BYTES",
 "PERUSE_FILE_N_IMMEDIATE_BYTES",
 "PERUSE_FILE_N_TEMP_FILES",
 "PERUSE_FILE_T_IOREQ_COMPLETION",
 "PERUSE_FILE_T_GET_SHARED_POINTER",
 "PERUSE_FILE_T_FIRST_PHASE_IN_SPLIT_IO",
 "PERUSE_FILE_T_SECOND_PHASE_IN_SPLIT_IO",
};

typedef struct _measure_t
{
 int n_measure;
 int count;
 double stamp;
 double total_time;
 double ave_time;
 double max_time;
} measure_t;

measure_t fdata[FMETRICS];

int file_callback(peruse_metric_h mh, int mstate, long count_val,
 peruse_file_spec_t *fspec, void *param)
{
 measure_t *ft = (measure_t *)param;
 double t;

 switch(mstate)
 {
 case PERUSE_TIME_BEGIN:
 ft->stamp = MPI_Wtime();
 break;

 case PERUSE_TIME_END:
 t = MPI_Wtime() - ft->stamp;
 ft->total_time += t;
 if(t > ft->max_time)
 ft->max_time = t;
 ft->ave_time = (ft->n_measure * ft->ave_time + t) /
 (ft->n_measure + 1);
 ft->n_measure++;

60

 break;

 case PERUSE_COUNTER:
 ft->count += count_val;
 ft->n_measure++;
 break;

 default:
 printf("Unexpected metric type\n");
 return MPI_ERR_INTERN;
 }

 return MPI_SUCCESS;
}

void UserFileIoCode(){}

int main(int argc, char **argv)
{
 peruse_metric_h mh[FMETRICS];
 int rv, size, i, rank, mid;
 MPI_File file;
 MPI_Info info;
 char fname[MPI_MAX_OBJECT_NAME];

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 rv = PERUSE_Init();
 if(rv != PERUSE_SUCCESS)
 {
 printf("Error in PERUSE_Init: rv=%d\n", rv);
 fflush(stdout);
 exit(1);
 }

 MPI_Info_create(&info);
 MPI_Info_set(info, "data_access", "NON_BLOCKING");
 sprintf(fname, "%s.%d\n", FNAME, rank);

 MPI_File_open(MPI_COMM_WORLD, fname,
 MPI_MODE_CREATE | MPI_MODE_RDWR | MPI_MODE_DELETE_ON_CLOSE,
 info, &file);

 for(i = 0; i < FMETRICS; i++)
 {
 memset(&fdata[i], 0, sizeof(measure_t));
 mh[i] = PERUSE_METRIC_HANDLE_NULL;
 PERUSE_Query_metric(fmetrics[i], &mid);
 if(mid == PERUSE_METRIC_INVALID) /* not supported */
 continue;
 PERUSE_Metric_file_init(mid, file, file_callback,
 &fdata[i], &mh[i]);
 PERUSE_Metric_start(mh[i]);
 }

 /* User code with file I/O operations begin here */
 UserFileIoCode();

 for(i = 0; i < FMETRICS; i++)
 {
 if(mh[i] == PERUSE_METRIC_HANDLE_NULL)
 continue;
 PERUSE_Metric_stop(mh[i]);
 PERUSE_Metric_free(&mh[i]);

61

 }

 MPI_File_close(&file);
 MPI_Finalize();

 return 0;
}

12.3 One sided communication (MPI_Win)
PERUSE_WIN_T_BTWN_REQ_AND_XFER Time between request submission and data transfer start. One-

sided communication is non-blocking. The actual delivery of
data is not required to happen before the access epoch is closed.
This metric provides information about the delay between the
user requests for one-sided communication and the moment
when the library actually initiates the transfer. The first time
stamp is taken when the one-sided request is submitted. The
second time stamp is taken when the library initiates the transfer
of the first byte of the user buffer. Control packets related to
internal packets are not counted as part of the user buffer.
Rationale: Thie metric provides information about the progress
of the non-blocking one-sided communication operations.
Although the standard allows the library to delay the
communication until the access epoch is closed, user programs
may need a better understanding of the behavior and the policies
of the MPI library for completing the one-sided requests.

PERUSE_WIN_T_XFER Time between transfer initiation and completion. This metric
measures the actual time for transmitting the one-sided message,
possibly accounting for special protocols and overheads that the
MPI library may introduce. The first time stamp is taken before
the first byte of the user buffer is scheduled for transfer. The
second time stamp is taken after the last byte of the user
message is scheduled for transfer.
Rationale: Similarly to the non-blocking send requests, the MPI
libraries may have message progress engines are unable to move
messages independently and the user process may need to call
the library frequently in order to ensure timely progress. This
metric can help users understand the behavior of the MPI library
and modify their program to use better the capabilities of the
MPI library.

12.3.1 PERUSE_Event_win_register
Synopsis

int PERUSE_Event_win_register(int event, MPI_Win win,
peruse_win_callback_t *callback_fn, void *param, peruse_event_h *event_h)

Input parameters
event – event descriptor
win – valid MPI window handle
callback_fn – user callback
param – user-specific data

Output parameters
event_h – inactive event handle

Return value
PERUSE_SUCCESS, PERUSE_ERR_EVENT, PERUSE_ERR_WIN,
PERUSE_ERR_PARAMETER

Description
Creates a event handle event_h related to an MPI window object by associating the event
descriptor event and window handle win. The user callback callback_fn is registered with the

62

output event handle. This callback function will be called when the MPI library performs an action
that will affect the event described by event_h. If callback_fn is NULL,
PERUSE_ERR_PARAMETER will be returned. PERUSE_ERR_EVENT will be returned if the
input event descriptor is invalid, and PERUSE_ERR_WIN if the win handle is invalid.
PERUSE_ERR_WIN indicates that the MPI library would have returned MPI_ERR_WIN class if
the user code tried to reference win in an MPI call.

12.3.2 PERUSE_Eevent_win_callback_set
Synopsis

int PERUSE_Event_win_callback_set(peruse_event_h event_h,
peruse_win_callback_t *callback_fn, void *param)

Input parameters
event_h – event handle
callback_fn – user defined callback function
param – user specific parameter that will be passed to the callback function

Output parameters
n/a

Return value
PERUSE_SUCCESS, PERUSE_ERR_EVENT_HANDLE, PERUSE_ERR_PARAMETER,
PERUSE_ERR_MPI_OBJECT

Description
This function associates a user defined window callback_fn function with an inactive event handle
event_h. The event_h and param input parameters will be passed to callback_fn when it is
invoked. The old callback will be lost and only the callback registered with this call will be kept. If
PERUSE_EVENT_HANDLE_NULL is passed as an input parameter or mh is active, the function
returns PERUSE_ERR_EVENT _HANDLE. If NULL is passed as callback_fn,
PERUSE_ERR_PARAMETER will be returned. PERUSE_ERR_MPI_OBJECT is returned if the
MPI object with which event_h is associated has been freed.

12.3.3 PERUSE_Event_win_callback_get
Synopsis

int PERUSE_Event_win_callback_get(peruse_event_h mh,
peruse_win_callback_t **callback_fn, void **param)

Input parameters
event_h – event handle

Output parameters
callback_fn – user defined callback function
param – user specific parameter that was passed to the callback function

Return value
PERUSE_SUCCESS, PERUSE_ERR_EVENT_HANDLE, PERUSE_ERR_MPI_OBJECT

Description
This function obtains the user defined callback function that is associated with the event handle
event_h. The value of the output parameter param is the one passed in by the user when the
callback was registered. If PERUSE_EVENT_HANDLE_NULL is passed as an input parameter or
event_h is active, the function returns PERUSE_ERR_EVENT_HANDLE.
PERUSE_ERR_MPI_OBJECT is returned if the MPI object with which event_h is associated has
been freed.

12.3.4 Win related info to be included in peruse.h
typedef struct _peruse_win_spec_t
{
 MPI_Win win;
 void *o_buf;

63

 int o_count;
 MPI_Datatype o_datatype;
 void *t_buf;
 int t_count;
 MPI_Datatype t_datatype;
 MPI_Op acc_op;
 int peer;
 int operation;
} peruse_win_spec_t;

typedef int (peruse_win_callback_f)(peruse_event_h event_h,
 MPI_Aint unique_id, peruse_win_spec_t *spec, void *param);

/* Initialize event associated with an MPI window */
int PERUSE_Event_win_register(
 int event,
 MPI_Win win,
 peruse_win_callback_f *callback_fn,
 void *param,
 peruse_event_h *event_h);

/* Set a new win callback */
int PERUSE_Event_win_callback_set(
 peruse_event_h event_h,
 peruse_win_callback_f *callback_fn,
 void *param);

12.4 Improved Tracking of MPI Objects

The initial specification of PERUSE does not provide efficient mechanisms for uniquely
linking callback events to specific user level MPI API calls. (A somewhat obtuse mechanism is
described in section 5.1.2) An efficient mechanism could be incorporated by exposing an
additional status field within MPI messages, but such an implementation requires an exposed
change to MPI (which violates one of PERUSE’s goals). This item is therefore placed in the
“Extensions for Future Consideration” appendix with the thought that if the MPI forum
reconvenes, this topic could be addressed.

This could also be used to help distinguish between point-to-point messages and
collective messages.

The following provides two mechanisms that illustrate how the MPI unique id could be
employed by PERUSE (currently there is no way for callback routines to get user-defined names
because only MPI_Wtick and MPI Wtime are allowed within a callback - can this be expanded
to MPI_get_comm_name?):

64

1. User-defined names from MPI_(Win,Comm)_set_name routines. Knowing the user-
defined names for MPI objects enables performance tools to display this name to facilitate user's
understanding of performance data, because they can more easily associate a performance
measurement with a particular MPI object.

2. MPI implementation given unique identifiers for MPI objects. If a user-defined name
is not given to an MPI object, then a performance tool can display a unique identifier for that
object instead. It is not sufficient to use the MPI object handle in the MPI function call
arguments to identify and differentiate between MPI objects, because an MPI implementation
may use pointers as the handles for MPI Objects. Because of this, the value of the MPI object
handle may not be equal across processes. A performance tool, such as Paradyn, may detect new
MPI objects by looking at the values of the arguments in the MPI function calls. If it sees two
distinct values, it may erroneously determine that there are two new MPI objects. It would be
helpful if there were a portable way to get this unique identifier for MPI objects from the MPI
implementation.

Here are two ways to provide this functionality:
1. Add query functions to the interface to provide additional information about MPI

objects.
 Here's an example of what I mean for communicators:
 struct _peruse_comm_t * PERUSE_Query_Comm_info(MPI_Comm comm);
 where
 typedef struct _peruse_comm_t{

MPI_Comm comm;
char * name; //user-defined name
int unique_id; //MPI implementation given unique id for comm

 } peruse_comm_t;

2. Instead of providing just the handle to the MPI object in the peruse_xxx_spec_t type,
use a PERUSE defined type that has more information. For example:

 _peruse_comm_spec_t{
peruse_comm_t pcomm; // where _peruse_comm_t is as it is defined above

 void * buf;
int count;
..... // continued as in the PERUSE specification

 }

12.5 Information wanted for support of dynamic process creation
1. A notification of a spawn start and spawn end. This will be useful if a tool is interested

in knowing how much time is spent in spawning operations and to notify the tool that new
processes are now part of the application.

2. Information about those new processes, such as PID, image name, and the node it runs
on. This information is needed so that the tool can find and possibly attach to the new processes
to measure their performance.

This functionality could be provided in the following way:

65

Add two new events:
PERUSE_SPAWN_START
PERUSE_SPAWN_END

Add two new functions:
PERUSE_Event_spawn_callback_set
PERUSE_Event_spawn_callback_get

Add a new datatype for the callback fuctions:
typedef struct _peruse_spawn_spec_t{

_peruse_comm_t *p_comm;
char ** argv;
int maxprocs;
MPI_Info info;
int root;
_peruse_comm_t *p_intercomm; //or MPI Comm
int ** array_of_errcodes;
_peruse_process_t * list_of_processes;

} peruse_spawn_spec_t;

Add a new datatype to provide information about processes:
typedef struct _peruse_process_t{

int PID;
char * image_name;
char * node_name;
int peruse_process_id; // a unique id for a process within peruse

} peruse_process_t;

12.6 Information wanted for remote memory access
1. Notification of events pertaining to transfer of data by and synchronization of RMA

operations. This will help a performance tool give more detailed timing information about RMA
operations. It may help the user decide on a synchronization method, a particular data transfer
routine, or determine the placing of synchronization routines within their code. For example, it
might be helpful if a performance tool could show a user that the RMA data transfer was actually
complete long before the synchronization routine was called to end the epoch.

Support for this could be provided by addition of new events and new operations.
These four events will give a performance tool information about data transfer routines:

PERUSE_WIN_REQ_ACTIVATE - RMA operation initiated by the user
PERUSE_WIN_REQ_XFER_BEGIN - transfer of data for RMA operation begins
PERUSE_WIN_REQ_XFER_END - transfer of data for RMA operation ends
PERUSE_WIN_REQ_COMPLETE - the operation is complete with respect to

the definition for the particular
synchronization method being used. For
example, if lock/unlock synchronization
is used, then this event will occur when
the data transfer is complete at both the
origin and the target processes, as that
is how complete is defined for
lock/unlock synchronization in the MPI
standard. Another way to define this

66

would be to say that this event would
occur when a synchronization operation
called for the data transfer operation
would not block.

The next two events will give a performance tool information about RMA synchronization
routines. From these the tool will know that a synchronization operation has occurred and how
long it took to execute.

PERUSE_WIN_SYNC_BEGIN - the synchronization routine in the user
application begins

PERUSE_WIN_SYNC_END - the synchronization routine in the user
application ends

Add new operations so that the tool can differentiate between different
kinds of RMA synchronization:

PERUSE_WIN_FENCE
PERUSE_WIN_START
PERUSE_WIN_COMPLETE
PERUSE_WIN_POST
PERUSE_WIN_WAIT
PERUSE_WIN_LOCK
PERUSE_WIN_UNLOCK

12.7 Information wanted for MPI-I/O
A user-friendly name for MPI File objects to display in the user interface. The standard

allows an MPI implementation dependent format for the filename argument given to the
MPI_File_open routine. In addition to containing the name of the file, it could also contain
information such as a hostname, or a username and password. The standard does not supply an
MPI_File_set_name routine. Perhaps implementers of the MPI Standard could supply the actual
name of the file through the PERUSE interface. This way, the performance tool would have an
MPI implementation independent way to get this information.

12.8 Information wanted for Control Packets

The initial specification of PERUSE does not provide sufficient mechanisms to
distinguish control packets (such as the rendezvous control packet) from user data. This
information is of use to parallel tool developers.

12.9 Additional Language Bindings

Additional language bindings may be desirable (e.g. python, java, …).

